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Abstract

This thesis addresses the problem of automatic synthesis of a satisficing

self-controlling program for a multiobjective combinatorial optimization

problem with respect to specification. Primary focus is on multiobjective

optimization problems where the objectives conflict and there is no prior

information on the relative importance or weights of the objectives. For

such problems, a globally optimum solution may not exist or may be im-

possible to find.

In the absence of an algorithm that can find global optima, a satisficing

technique is used. In this technique, first, the original multiobjective op-

timization problem is converted to many constraint satisfaction problems

(CSP). Next, each CSP is solved individually by a CSP solver that uses

a branch and bound algorithm. Then, the feasible solutions for each CSP

are ordered by the respective objective functions. Finally, a negotiation

algorithm is used to select one solution among these ordered solutions that

will satisfy all the CSPs.

To support this technique, an agent-based software architecture is spec-

ified. For each objective, a different software agent is created. Each agent

independently executes the branch and bound algorithm and reports the

feasible solutions found to an entity called a “reconfigurer.” The recon-

figurer mediates the negotiation among agents. Anytime a solution is
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demanded, the reconfigurer applies an imitative negotiation approach to

choose the best-compromise solution among the ones that are reported up

to that moment. The quality of the solutions improves as the system allows

more time for the search.

UML/OCL is selected as the language in which problem specifications

can be expressed. An automatic conversion mechanism for translating

UML/OCL specifications to multiple CSPs is provided. A generic CSP

code generator is implemented as a proof of concept for the conversion

mechanism. For the proof of concept, OZ is selected as the target CSP

programming language. The proof of concept system is tested against two

experimental scenarios – a job scheduling problem and a fixture design

problem – with each problem having conflicting objectives. For both prob-

lems, phase transition invariants are identified empirically and later used

to generate hard problems that show phase transition behavior. The proof

of concept system is executed against these hard problems, and the per-

formance of system is measured for different control parameters and initial

conditions. The critical control parameters, which the performance of the

proof of concept is most sensitive to, are identified. The experiments with

the proof of concept system show that satisficing programs can be auto-

matically generated from specifications, that the complexity of the CSP

solving algorithms can be controlled, and that the hard problems (phase

transitions) can be detected with high probability and low probability of

false alarm.
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Chapter 1

Introduction

Multiobjective optimization is a core area in engineering, business practice,

and research. Application areas of multiobjective optimization include

resource allocation, transportation, logistics, distribution, investment de-

cisions, business planning with uncertain information, and others. Multi-

objective optimization problems are formulated in terms of performance

criteria (objective functions) and constraints. Optimization problems di-

vide into two categories; those with continuous variables and those with

discrete variables, which are also called combinatorial optimization prob-

lems.

Two examples of combinatorial optimization problems are design of a

system and order negotiation in the manufacturing context. In design,

components and a structure must be selected which “fit together” while

the resulting system delivers the desired performance. The system must

be energy efficient as well as relatively inexpensive. In order negotiation,

the goal is to select the products to be manufactured, the amounts of each

product, and the prices necessary to satisfy goals of both the manufac-

turers and the customers. While the manufacturer wants to maximize the

1



CHAPTER 1. INTRODUCTION 2

profit and lead times, the customer is interested in minimizing the cost and

the lead time. The constraints include manufacturing plant capabilities,

storage capabilities, and other necessary items.

Finding a solution requires finding an instantiation of the problem vari-

ables that not only satisfy constraints, but also meet high value results in

performance criteria. A way to search for an optimal solution is first con-

verting the original problem into a number of constraint satisfaction prob-

lems (CSP) and then selecting a solution that is best from the point of view

of optimality. When a CSP problem is NP-complete, full algorithmic op-

timal solutions cannot be expected. Moreover, since multiple performance

criteria are involved, any solution requires tradeoffs among them. One has

to settle for less than optimality. Conceptualizations of this kind of problem

formulation are known as satisficing solutions or good-enough-soon-enough

solutions. Solutions of this kind of problem typically use search as one of

the components. However, since a generic search algorithm does not guar-

antee finding solutions within a finite time, the search incorporates features

specific to a particular problem. In other words, the search is domain and

problem specific.

As a consequence, a special program needs to be developed for any spe-

cific problem/domain. What if the problem formulation changes? Either

a new program will need to be developed or the original program will need

to have built-in mechanisms for adapting to changes. While the former

applies to non-parametric changes in constraints and objective functions,

the latter approach is appropriate when the changes in the constraints are

parametric.

To solve the CSP problem described above, off-the-shelf CSP solvers
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could be used, but all of them require coding in a CSP language. A user-

oriented and high-level language that will hide the implementation details

related to the CSP solver is desirable [108]. The Unified Modeling Lan-

guage (UML) is a combination of such abstract and graphical languages.

The use of an abstract language like UML/Object Constraint Language

(OCL) for domain modeling brings the necessity of a translator and code

generator that will read the abstract language and generate the code for

the target CSP solver. However, when automatic translation of problem

specifications into CSP code replaces the human programmer, the automat-

ically generated code may never terminate due to the complexity of CSP

search. Therefore, the replacement of manual CSP coding by a UML/OCL

interface requires a solution to the handling of the complexity of the search

for a satisficing solution.

This thesis addresses the specific problem just mentioned above. How

can a satisficing program for a multiobjective combinatorial optimization

problem be automatically synthesized with respect to specification such

that it can monitor and control its complexity? In order to develop such a

program, a number of questions must be answered. What is the language

in which problem specifications can be expressed? What algorithm or

system can be used to search for solutions to multiobjective satisficing

problems? What algorithms should be used to determine the aspiration

levels (good-enough) for the objective functions in satisficing problems?

How does the program monitor and control its computational complexity?

What architecture should be used to implement the control of complexity?

This research investigates the use of UML to capture the structural

aspects of the user’s view of problem formulations; OCL to capture quan-

titative and global constraints; mapping of multiobjective optimization
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problems to an agent-based architecture in which each objective (goal) is

“represented” by an agent; a general CSP solver to implement search; nego-

tiation as a mechanism to determine the aspiration levels for each objective

function; phase transition invariants for the purpose of identifying for com-

putation intensive regions; and Self-Controlling Software Architecture to

control the complexity of the search.

To evaluate the approach, an experimental system is implemented and

tested using two scenarios, a fixture design utility and a job-scheduling

system. Problem formulations are specified using the UML representa-

tion. Formulations are automatically translated into the selected CSP

programming language and then used by the system to find satisficing so-

lutions. The goal is to provide a proof-of-concept for developing such a

self-controlling satisficing program that (1) is applicable to various multi-

objective optimization problems and (2) has the ability to control its own

complexity.

In both experimental scenarios, the system tests both hard and easy

regions in order to show their ability to control their own complexity. The

phase transition behavior is investigated. A model for phase transition

(complexity as a function of the parameter characterizing the amount

of change) is developed and then used to generate test data to test the

proposed system. The quality of solutions to multiobjective optimization

problems is also evaluated against known benchmark approaches.



Chapter 2

Literature Review

2.1 Introduction

The search for solutions starts with a short description of multiobjective op-

timization problems. The challenges in finding one solution that optimizes

all objectives are discussed first. Combinatorial optimization problems, as

a subcategory of general optimization problems, are introduced next. Con-

straint satisfaction problems (CSP) in general follow where an overview of

existing CSP approaches are given. Since CSP algorithms are outside the

scope of this thesis, focus rests on the CSP solvers, the evaluation of the

performance of CSP solvers, and the phase transition phenomena. Next,

the concept of satisficing as an alternative to optimization is discussed, a

practice originating from Herbert Simon’s [125] ideas on the conversion of

optimization problems to constraint satisfaction problems when it becomes

evident that the extra cost of finding an optimum solution exceeds the ben-

efits of finding one. The satisficing approaches – approximate reasoning,

meta-reasoning and bounded optimality – are presented, after which a list

of CSP solution methods and tools are given. A discussion of self adaptive

5
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software and negotiation follows since it is related to the architecture pro-

posed in this thesis. A comparison of the approach to the solution with a

review of literature in the field closes the search.

2.1.1 Multiobjective Optimization Problems

Decision making for single-objective optimization has been well-studied.

The problem becomes more difficult when a consideration of several con-

flicting objectives is required. In many cases, it is unlikely that different

objectives would be optimized by the same choices of decision variables.

Therefore, a trade-off between the objectives is needed to ensure a satisfac-

tory solution. This type of problem is known as either a multiobjective or

multi-criteria optimization problem (MOOP). Examples of multiobjective

optimization are seen as early as in nineteenth-century economics [26, 99].

A multiobjective optimization problem has a number of objective func-

tions which are to be minimized or maximized. The problem usually has

a number of constraints which any feasible solution (including the opti-

mal solution) must satisfy. In the following formula, the multiobjective

optimization problem is stated in its general form:

Minimize/Maximize fm(x), m = 1, 2, . . . ,M ;

subject to gj(x) ≥ 0, j = 1, 2, . . . , J ;

hk(x) = 0, k = 1, 2, . . . , K;

xL
i ≤ xi ≤ xU

i , i = 1, 2, . . . , N.





(2.1)

The last set of constraints is called variable bounds. These restrict each

decision variable xi to take a value within a lower bound xL
i and an up-

per bound xU
i . A solution x is a vector of N decision variables: x =
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(x1, x2, . . . , xN)T . The values of decision variables bounded by these lim-

its constitute a decision space D. There are J inequality and K equality

constraints that are associated with the problem above. The terms hk(x)

and gj(x) are called constraint functions. Instead of “≤” type inequal-

ity constraints, “≥” type inequality constraints can be used. If a value

of x satisfies all of the (J + K) constraints and all of the 2N variable

bounds, it is called a feasible solution. There are M objective functions

F (x) = (f1(x), f2(X), . . . , fM(x))T in the above equation. Each objective

function can be either minimized or maximized. Multiobjective optimiza-

tion is sometimes referred to as vector optimization, because an M -tuple

of objectives is optimized. The space in which the objective vectors belong

is called the objective space.

Some of the well-known methods to solve multiobjective optimization

problems are,

• weighting objectives,

• ε-constraint method,

• goal programming,

• hierarchical optimization,

• global criterion,

• distance functions,

• min-max optimum,

• and, trade-off methods [31, 28].



CHAPTER 2. LITERATURE REVIEW 8

All of the classical methods listed above suggest a way to convert a multiob-

jective optimization problem into a single-objective optimization problem.

For such a conversion, the methods above require more knowledge about

the problem. For example, in weighting objectives method, the individual

weights should be known and assumed to be constant.

Most multiobjective optimization methods use a concept called domina-

tion. In these methods, two solutions are compared on the basis of whether

or not one solution dominates the other solution. In [22], domination is

defined as the following:

Definition 2.1.1 (Strictly Better). A solution x2 is strictly better than

solution x1 for a given objective function fm, if

• fm(x1) < fm(x2), when the objective is to maximize fm,

• fm(x1) > fm(x2), when the objective is to minimize fm

Definition 2.1.2 (Better solution). Between two solutions x1 and x2, x1/

x2 denotes that the solution x1 is better than the solution x2 on a particular

objective.

Definition 2.1.3 (No worse than). Between two solutions x1 and x2,

x1 6 / x2 denotes that the solution x2 is no worse than the solution x1 on a

particular objective.

Definition 2.1.4 (Domination). A solution x1 is said to dominate the

other solution x2 (or mathematically x1 ¹ x2), if both conditions 1 and 2

are true:

1. The solution x1 is no worse than x2 in all objectives, or fm(x2)6 /fm(x1)

for all m = 1, 2, . . . , M .
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2. The solution x1 is better than x2 in at least one objective, i.e., ∃m′ ∈
{1, 2, . . . , M} such that fm′(x1) / fm′(x2)).

Definition 2.1.5 (Non-dominated Set). Among a set of solutions X, the

non-dominated set of solutions X ′ are those that are not dominated by any

member of the set X.

When the set X is the entire search space, the resulting non-dominated

set X ′ ⊂ X is called the Pareto optimal set.

Definition 2.1.6 (Globally Pareto-optimal Set). The non-dominated set

of the entire decision space D is the globally Pareto-optimal set.

In reaction to the weaknesses of the classical methods, a new set of

methods like genetic algorithms were designed. For a more complete list of

optimization algorithms, the reader can refer to [22].

However, as it is stated in [130, 47, 124], there are two major con-

cerns or weaknesses in these methods. The first weakness is that finding

an optimal solution may not be feasible with the given resources (e.g.,

computational power, time, cost, and knowledge limitations, etc.). The

second weakness is that optimization fails to describe how decisions are

often made in natural settings. Requirements for reliability, functionality,

and robustness in uncertain and changing environments can conflict with

optimal performance requirements. Therefore, new research areas have

emerged for exploring concepts of decision making that do not depend on

the principle of optimality.

2.1.2 Combinatorial Optimization

Combinatorial optimization problems are a subcategory of the general op-

timization problems where the values of some or all of the decision variables
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are restricted to be integer. The word “combinatorial” is used to present

the fact that only a finite number of alternative feasible solutions exists.

Combinatorial optimization problems are often referred to as integer pro-

gramming problems. A survey of related applications and algorithms of

combinatorial optimization can be found in [49, 98, 27].

Some classical combinatorial optimization problems are; 1) knapsack

problem [83] which is important for cryptography, computer file protection,

electronic transfer of funds, and electronic mail, 2) network and graph prob-

lems [4], 3) travelling salesman problem which has applications in routing,

scheduling, large scale circuitry design, and strategic defense [6, 96], 4)

minimum cut problem which has important implications for the reliability

of large systems, and 5) rule-based scheduling problems [50].

Finding an optimal solution to combinatorial problems can be difficult

due to the fact that unlike linear programming whose feasible region is a

convex set, in combinatorial problems, a lattice of feasible points or a set of

disjoint half-lines or line segments need to be searched to find an optimal

solution [56].

Three of the well-known approaches for solving integer programming

problems are; 1) enumerative techniques (e.g. branch and bound) [67], 2)

relaxation [35] and decomposition techniques [51], and 3) cutting planes

approaches based on polyhedral combinatorics [45].

2.1.3 Constraint Satisfaction Problems

A constraint satisfaction problem (CSP) consists of a finite set of variables,

each associated with a domain of values, and a set of constraints. A solution

is reached when there is an assignment of a value to each variable from its

domain that satisfies all the constraints. Typical constraint satisfaction
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problems are; (1) to determine whether a solution exists, (2) to find one

or all solutions, and (3) to find an optimal solution relative to a given cost

function. In a way, MOOP defined in Equation 2.1 is a special instance of

CSPs. The absence of a cost function makes the CSPs easier to solve than

the classical MOOPs.

Two well known examples of constraint satisfaction problems are k-

colorability and SATisfiability. In k-colorability, the task is to color a

given graph with k colors so that any two adjacent nodes have different

colors.

In SATisfiability, the task is to find the truth assignment to proposi-

tional variables in boolean expressions in conjunctive normal form (CNF),

e.g. Equation 2.2, so that all clauses in boolean expressions are satisfied.

While a clause is a boolean sum of variables or their negations, a boolean

expression in CNF is a product of many clauses.

(A ∨B ∨ C) ∧ (C̄ ∨D ∨ A) ∧ (D̄ ∨ E) (2.2)

The classical CSP framework had been introduced formally at the be-

ginning of the 70’s [87]. ([89] gives a brief history of the studies on CSP).

The general constraint satisfaction problem is of high-complexity (NP-

complete or worse) and provides no efficient algorithm to solve it. There-

fore, one of the main research topics has been finding fast preprocessing

algorithms that can make the search for a solution efficient in important

practical cases.

A widely used method for solving the CSP is backtracking. In this

method, variables are instantiated sequentially. As soon as all the variables

relevant to a constraint are instantiated, the validity of the constraint is
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checked. If a partial instantiation violates any of the constraints, back-

tracking is performed to the most recently instantiated variable that still

has alternatives available. However, the backtracking method suffers trash-

ing ([42]); i.e., search in different parts of the space keeps failing for the

same reasons. For example, suppose the variables are instantiated in the

order V1, V2, . . . , Vi, . . . , Vj, . . . , VN . Suppose further that the binary con-

straint between Vi and Vj is such that for Vi = a, the binary constraint

disallows any value of Vj. In the backtrack search tree, whenever Vi is

instantiated to “a”, the search will fail while trying to instantiate Vj. This

failure will be repeated for each possible combination that the variables

Vk(i < k < j) can take. The cause of this kind of trashing is referred as to

as lack of arc consistency.

The following definitions from [73] can be helpful to understand arc-

consistency:

Definition 2.1.7 (n-ary constraint). An n-ary constraint is a constraint

in which the number of variables relevant to the constraint is n or less.

Definition 2.1.8 (n-ary CSP). An n-ary CSP is a CSP, in which each

constraint is an n-ary constraint.

Definition 2.1.9 (Binary CSP). A binary CSP is a CSP, in which each

constraint is unary or binary.

It is possible to convert an n-ary CSP to another equivalent binary CSP

[109]. A binary CSP can be depicted by a constraint graph in which each

node (Vi) represents a variable and each arc (Arc(Vi, Vj)) represents a con-

straint between variables represented by the end points of the arc. A unary

constraint is represented by an arc originating and terminating at the same

node.
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Definition 2.1.10 (Arc consistency). Arc(Vi, Vj) is arc consistent if for

every value x in the current domain of Vi there is some value y in the

domain of Vj such that Vi = x and Vj = y is permitted by the binary

constraint between Vi and Vj.

The concept of arc-consistency is directional; i.e., if an arc (Vi, Vj) is con-

sistent, then it does not automatically mean that (Vj, Vi) is also consis-

tent. Trashing due to arc-inconsistency can be avoided if, before the search

starts, each arc (Vi, Vj) of the constraint graph is made consistent.

Algorithms for eliminating arc-inconsistency are only a subset of pre-

processing algorithms that are used to increase the efficiency of the search

algorithms. Some of such preprocessing algorithms are described in [33,

80, 87, 38, 23, 39, 145].

Later, a new research field has emerged that focuses on finding classes of

constraint satisfaction problems where the preprocessing algorithms could

find a solution by themselves. These classes of problems are referred to as

“islands of tractability”. Some identified classes are tree-structured prob-

lems, problems generated by graph grammars [88], and problems with a

certain relationship between their graph structure and their level of con-

sistency [24].

Sometimes a constraint satisfaction problem can be over-constrained.

When there is no solution that will satisfy all constraints, some of the

constraints can be relaxed to make the problem solvable. In such a case,

the algorithm needs to find that the problem is unsolvable first, and then to

determine the constraints that can be relaxed. To determine the constraints

that will be relaxed, the algorithm can assign a level of importance to each

constraint. Hierarchical CLP (HCLP) [11] is such a CLP language and a

CSP solving algorithm that satisfies the constraints by the order of their
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importance.

The classical CSP model assumes a well-defined and stable constraint

satisfaction problem, and the main task is to find either one or all solu-

tions. However, in [89], Montanari and Rossi state that the constraints are

dynamic in many real-life problems, that there is a need for more inter-

active constraint satisfaction systems, and that they provide assistance in

the modeling phase and support dynamic changes in the constraints.

Phase Transitions

Comparing the performance of different search algorithms is important.

Some measures are: the number of consistency checks, the number of nodes

visited, CPU time, the number of permanent search no-goods (the values

that are eliminated from variable domains permanently to establish the

arc consistency), and the number of temporary search no-goods (variable

values that are discarded for a particular search step). Theoretical eval-

uation of constraint satisfaction algorithms is accomplished primarily by

worst-case analysis or by dominance relationships [72].

All these measures are useful only if the algorithm terminates. For

NP-complete problems, however, a different approach is needed. In the

past, untractable problems were avoided. But, then it was recognized that

for NP-complete problems, solutions can be found, except for some input

regions called “phase transitions”.

The idea of phase transitions was first introduced in statistical physics.

From [60]: “Studies in statistical mechanics have shown that despite the

apparent diversity in the composition and underlying structure of these

systems, phase transitions take place with universal quantitative charac-

teristics, independent of the detailed nature of the interactions between
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individual components. This means the singular behavior of observables

near the transition point is identical for many systems when appropriately

scaled, defining universality classes that only depend on the range of in-

teraction of the forces at play and the dimensionality of the problem. One

of these common characteristics is rapidly increasing correlation lengths

between parts of the system as the transition is approached, giving rise to

a change from a disordered to an ordered state and particularly large vari-

ances. It is these so-called critical phase transitions that are most relevant

to computational search.”

In [14], Cheeseman showed that, for many NP-complete problems, one

or more “order parameters” can be defined, and that hard instances occur

around particular critical values of these order parameters (or invariants).

Such critical values form a boundary that separates the space of problems

into two regions or phases. While one region is under-constrained and

easy to find a solution, the other region is over-constrained and unlikely to

contain a solution. Really hard problems occur on the boundary between

these two regions where the probability of finding a solution is low but not

negligible.

Currently, a normal approach is to evaluate a proposed algorithm em-

pirically on a set of randomly generated instances taken from the relatively

“hard” phase transition region [122]. As Cheeseman indicated, there is a

need to produce phase transition diagrams for particular problem domains

to help in identifying hard problems and predicting the existence of solu-

tion, such as shown in [103]. Phase transitions in constraint satisfaction

problems have also been studied by [101, 128, 43, 121, 61, 58, 59, 147]. At

this point, the challenge is to identify an order parameter for a particular

problem domain.
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2.1.4 Satisficing

In [125, 126, 127], Herbert Simon proposed that searching for an optimal

solution could be terminated when an option was identified that met the

the decision maker’s aspiration level, the point where the cost of further

searching for alternatives exceeded the expected benefit of continuing the

search. Instead of using an optimal program, which maximizes a pay-off

function, he suggested determining a threshold (aspiration level) that the

payoff must exceed. The payoff requirement would be represented as an

additional inequality that needed to be satisfied. The aspiration level is a

term borrowed from psychology, where it represents a dynamic, context-

dependent criterion typically acquired by experience. While Simon’s sat-

isficing idea inspired many other theories, the seemingly ad hoc nature of

determining an aspiration level was criticized as arbitrary [131]. In [150],

the weaknesses and open questions of Simon’s definition of satisficing were

summarized as follows:

• The aspiration level tells the designer nothing about the problem

solving technique.

• What is a “good enough” solution?

• How can a computer measure that?

• Should a satisfactory solution be reached directly or by iterative re-

finement?

• How is the performance of a satisficing agent evaluated ?

Current approaches to satisficing are approximate reasoning, meta-

reasoning, bounded optimality, and a combination of the above. These
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approaches lead to different agent-based designs and performances, al-

though optimal meta-reasoning and bounded optimality are favored over

other approaches. Papers are beginning to emerge regarding the prob-

lems of satisficing multiple-agent decision making [123]. However, they are

mainly interested in the algorithms, and little has been done to formalize

a multi-agent satisficing concept.

Approximate Reasoning

An approximate model of the problem domain can be used to find a solu-

tion. A solution which is optimal to the simplified problem, is not neces-

sarily optimal for the original problem. Tractable models can be created

by abstraction or by making simplifying assumptions. Some of the work in

this area were Bayesian belief networks, reasoning with approximate the-

ories [111] (or knowledge compilation as it is called in [120]), and fuzzy

logic.

Meta-Reasoning

Perfect Rationality (or Type I Rationality) is the classical notion of ra-

tionality in economics and philosophy. A perfectly rational agent acts at

every instant in a way that maximizes its expected utility, given the in-

formation it has acquired from the environment. Since action selection

requires significant computation time, perfectly rational agents do not ex-

ist for non-trivial environments.

Meta-reasoning, also called Type II rationality by I. J. Good [46], uti-

lizes some sort of metalevel architecture. Metalevel architecture is a design

concept for intelligent agents that divides an agent into two (or more) lev-

els. The first level, called object level carries out the computations in the
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problem domain. The second level, called metalevel, is a second decision

making process whose application domain consists of the object level com-

putations themselves and the computational objects and states that they

affect. The basic idea is that object-level computations are actions with

costs and benefits. A rational metalevel selects computations according to

their expected utility.

Anytime algorithms are used for a general class of meta-reasoning prob-

lems. Anytime algorithms are the algorithms whose quality of results im-

prove gradually as computation time increases. They offer a tradeoff be-

tween resource consumption and output quality [20, 62, 21]. There are two

types of anytime algorithms, interruptible and contract. An interruptible

algorithm can be interrupted at any time to produce results whose quality

is described by its performance profile, where a performance profile is a

probabilistic description of the dependency of output quality on computa-

tion time. In a contract algorithm the total time allocated for computation

needs to be known in advance. Therefore, interruptible algorithms are more

flexible than contract algorithms although they are more complicated to

construct for three reasons. Such an algorithm gives a solution before the

deadline independently of the quality of the best solution it knows at the

time. In other words, the “soon-enough” requirement has higher priority

than the “good-enough” requirement. First, the designer has to ensure the

interruptibility of the composed system, that the system as a whole can

respond to immediate demands for output [113]. Second, a mechanism has

to allocate the available computation optimally among the components to

maximize the throughput and the total output quality. While the prob-

lem can be solved in time linear in program size when the call graph of

the components is tree-structured [114], the problem is NP-hard for the
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general case. Third, almost all metalevel reasoning systems to date have

adopted a myopic strategy – a greedy, depth-first search at the metalevel.

Research has started to develop programming tools for composition and

monitoring of anytime algorithms [149, 48, 91].

Bounded Optimality

A bounded optimal agent behaves as well as possible given its computa-

tional resources [112]. The following definitions allow better understanding

of the concept of bounded optimality. Let O be the set of percepts that

the agent can observe at any instant, and A be the set of possible actions

the agent can carry out in the external world (including the action of doing

nothing). Then;

Definition 2.1.11 Agent function f : O∗ → A defines how an agent be-

haves under all circumstances.

Assume Agent(l, M) is the agent function implemented by the program

l running on machine M , LM is the finite set of all programs that can

be run on M , E is the environment class in which the agent operates,

and U is the performance measure which evaluates the sequence of states

through which the agent drives the actual environment. Finally, V (f,E, U)

denotes the expected value according to U obtained by any agent function

f in environment class E. Then;

Definition 2.1.12 (Bounded optimality) The bounded optimal program

lopt is defined as

lopt = argmaxl∈LM
V (Agent(l, M),E, U) (2.3)
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In [115], the steps to construct a provably bounded optimal agent are

specified as follows:

• Specify the properties of the environment in which actions will be

taken.

• Specify a class of machines on which the programs are to be run.

• Specify a construction method.

• Prove that the construction method succeeds in building bounded

optimal agents.

As Zilberstein points out, bounded optimality represents a well-defined

optimization problem, but, it actually shifts the intractable computational

task from the agent to its designer. While desirable, it is hard to achieve.

The approach described in [106] is one of many that combine multilevel

reasoning and bounded optimality.

Satisficing Equilibria

In terms of grammar, there are three degrees of comparison: (1)Superlative

(or highest) degree is founded on the notion of being “best” and requires

rank-ordering preferences for the consequences associated with the solu-

tions [57]. (2) Positive (or lowest) degree is founded on the notion of being

“good” and requires no explicit preference orderings or comparisons. (3)

Comparative degree (or paradigm), is founded on the notion of being “bet-

ter” and tries to fill the gap between the superlative and positive degrees.

Under the comparative paradigm, a set of utilities are used to provide

rankings of attributes for each solution.
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In [131], Stirling and Goodrich have introduced the notion of satisficing

equilibria. Given a set of solutions in a decision making problem, instead of

making one global decision with respect to the entire collection of solutions,

the comparative paradigm requires a separate local decision to be made for

each solution.

Definition 2.1.13 (Satisficing equilibria) A solution is in a state of sat-

isficing equilibrium if

S-1 The benefits derived from adopting it at least compensate for the costs

incurred.

S-2 No other solution provides more benefits without also costing more, or

costs less without also providing less benefit.

Condition S-1 provides a weak notion of adequacy. Condition S-2 ap-

plies the domination principle to the cost-benefit framework to eliminate

options that needlessly sacrifice performance or incur expense. In gen-

eral, the set of solutions in a state of satisficing equilibrium will not be a

singleton. Further elimination will be required before action can be taken.

2.1.5 CSP Solution Methods and Tools

Constraint Logic Programming

Application developers took advantage of the constraint-solving methods

and used constraint-related techniques successfully in applications such as

assignment problems, CAD, decision-making systems, graphics, network

management, robotics, scheduling, typesetting and VLSI. This led to the

design and implementation of a number of constraint-based programming
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languages [17]. SKETCHPAD [134], CONSTRAINT [133], and ThingLab

[9] were some of the earlier constraint programming languages.

Another group of programming language designers recognized that logic

programming was an appropriate language for stating combinatorial search

problems. Its relational form made it easy to express constraints while its

non-determinism removed the need for programming a search procedure.

However, traditional logic programming languages (e.g., Prolog) could be

inefficient, causing trashing, repeated failure due to the same reason, or

having to do redundant work during backtracking– all due to their passive

use of constraints to test potential values instead of reducing the search

space actively [143]. In addition, defining rich data structures and opera-

tions on these structures were not possible.

Earlier constraint logic programming (CLP) languages like CHIP [139],

CLP(<) [64], Prolog II, and Prolog III tried to preserve the advantages

of logic programming without being affected by its limitations. Later,

the CLP scheme [63] generalized the fundamental idea behind these con-

straint logic programming languages by defining a family of programming

languages based on their semantic properties. The scheme could be in-

stantiated to produce a specific constraint logic programming language by

defining a constraint system. It was later generalized into the concurrent

constraint CC framework of concurrent constraint programming to enable

issues such as concurrency, control, and extensibility to be addressed at

the language level.

Today’s well known constraint programming languages, in addition to

CHIP and Prolog III [15], are Eclipse [29], OZ [116, 129, 84], CIAO [55],
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AKL [53], Prolog IV [16], HAL [25] and Salsa [74]. Their constraint vo-

cabulary and solvers perform beyond traditional linear and non-linear con-

straints and support logical and global constraints. OZ, CIAO, and AKL

use CC framework and implement distributed and concurrent systems.

However, these languages mostly target the computer scientists and have

weaker abstractions for algebraic and set manipulation.

Helios language [140] and Numerica [141], on the other hand, have

been designed to solve non-linear constraint systems using interval analysis

techniques while CLP toolkits, like QOCA [82], EaCL [137] and Ultraviolet

[10], implement graphical user interfaces to monitor the progress of the

constraint solver and provide the user with a mechanism to interact with

the solver at run-time.

Modeling Languages for CSP

Mathematical modeling languages are another kind of tool used in opti-

mization. Modeling languages like AMPL [36], GAMS [3], Claire [77, 78],

CML [5], and VISUAL SOLVER [142] provide high-level algebraic and set

notations to express mathematical problems that can then be solved using

the solvers just mentioned. In the case of CML, the models written by this

language are later translated to CHIP.

There are also a new set of optimization programming languages, like

OPL [8], XPRESS-MP, and Modeler++ [86], which aim to unify modeling

and constraint programming languages.

In addition, there are negotiation [40], machine learning [110] and con-

straint query languages [68, 13] where CLP and database technologies were

integrated as well as other techniques that have been applied to constraint

problems to help the user to model the system.
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2.1.6 Active Software

In [104], Laddaga states that there are three principle interrelated problems

facing the software development:

• Escalating complexity of application functionality

• Insufficient robustness of the applications

• The need for autonomy

To deal with these problems, Laddaga proposes an approach called

active software. A system that follows this approach must be responsi-

ble for its own robustness and manage its own complexity. To accomplish

this, the system must incorporate the representations of its goals, methods,

alternatives, and environment. The collection of available technologies un-

der active software are tolerant software, physically grounded software, self

adaptive software, and negotiated coordination. All of these technologies

incorporate the knowledge of requirements, designs, structure, I/O sources

in the running software and can be used together. Tolerant software is

software that can tolerate non-critical variations from nominal specifica-

tion. Physically grounded software is software that takes explicit account

of its environment and other physical factors in the context of embedded

systems. A discussion of self adaptive software and negotiated coordination

follows in the following sections.

Self Adaptive Software

Self-adaptive software is defined in [75]: “Self-adaptive software evaluates

its own behavior and changes behavior either when the evaluation indi-

cates that it is not accomplishing what the software is intended to do or
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when better functionality or performance is possible.” To accomplish con-

stant performance evaluation and behavior change when the performance

drops below criteria, the runtime code needs to include (1) descriptions of

the software goals, design, and program structure and (2) a collection of

alternative implementations and algorithms.

Early research in self-adaptive software has concentrated on three

paradigms: dynamic planning systems, self-controlling systems, and self-

aware systems. Dynamic planning systems plan their actions first [44, 92].

After evaluating and confirming the effectiveness of their actions, they start

the execution. Planning includes scheduling and configuration of resources

such as hardware, communication capacity, and software components.

In self-controlling systems [70, 71, 30, 41, 7] (detailed in Section 3), the

runtime software behaves like a plant, with inputs and outputs monitored

and controlled by separate monitoring and controlling units. There are

three levels of control: feedback, adaptation, and reconfiguration.

In a self-aware system [136, 69, 12, 107], the key factor is a self-modeling

approach. The application is built to contain knowledge of its operation;

and it uses this knowledge to evaluate performance and to configure and

adapt to changing circumstances.

In [76], Laddaga points to the following problems and unsolved issues

in existing self-adaptive work:

• Evaluation of the functionality and the performance at runtime [85].

• Dynamism and software architecture representations for self-adaptive

software: more introspective languages, better debug-ability, better

process descriptions, better structural descriptions [100].

• Runtime performance while evaluating outcomes of computations
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and determining if expectations are met.

• Effort required to create software capable of evaluating and reconfig-

uring itself.

• Lack of adequate metrics for degree of robustness and adaptation.

• Advances in computer hardware.

Two of the implementations of self-adaptive software are SAFER and

ASC [79].

Negotiated Coordination

Negotiation is defined as “a process by which a joint decision is made by

two or more parties. The parties first verbalise contradictory demands and

then move towards agreement by a process of concession making or search

for new alternatives [102]”. Negotiated coordination is defined as “the co-

ordination of independent software entities via mutual rational agreement

on exchange conditions” [104].

There are advantages to using negotiation among agents in a software

system because it is inherently distributed, multi-dimensional, and robust

against the changes in the environment.

Negotiated coordination, another approach covered under the active

software paradigm, was supported by a number of government and research

organization programs. One of these programs is called the ANTs (Au-

tonomous Negotiating Teams) program sponsored by AFRL and DARPA.

The objective of ANTs program [2] is to provide technology that enables

the development of information systems that autonomously negotiate the

assignment and customization of resources to tasks in real-time, distributed
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allocation systems. Under the ANTs program, a series of research projects

have started:

• CAMERA (Coordination and Management of Environments for Re-

sponsive Agents), a joint project executed by ISI/University of South-

ern California and Vanderbilt University. Its functionality is schedul-

ing of pilots against tasks and planes, self-monitoring and reporting

of the negotiating agents, and self-correcting negotiations that will

force the agents to work collectively.

• ATTEND (Analytical Tools To Evaluate Negotiation Difficulty), maps

the resource management problem that the system is trying to solve

by negotiations into a CSP. ATTEND uses: ideas like satisficing

decision making, control over real-time performance, and complex-

ity reduction via phase-transition aware partitioning of task space;

management of resource contention facilitated by SAT encoding of

complex allocation problems.

• MARBLES [37], a definition and comparison of cooperative negoti-

ation schemes for distributed resource allocation; assigns values (or

prices) to the tasks and allocates the higher value resources first.

• DEALMAKER utilizes agents that select the best sources of sup-

ply to fill orders [135]; uses a flexible XML-based representation for

the contracts and has an interactive user interface to enter contracts

online and enter rules to govern the contracts.

• The MICANTS (Model Integrated Computing and Autonomous Ne-

gotiating Teams for Autonomous Logistics), executed by Vanderbilt
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University; seeks to develop efficient negotiation protocols for dis-

tributed problem solving in the logistics domain.

• MAPLANT (Maintenance Planning Tool) [138], part of MICANTS

project; program goal to create a schedule for airplane maintenance

activity; scheduling problem first transformed to a finite domain con-

straint problem, then the CSP code manually written in OZ; input

data provided in XML format. Like DEALMAKER, MAPLANT has

a graphical user interface that helps the user interact with the search

process.

• ADEPT (Advanced Decision Environment for Process Tasks) , a

multi-agent system based on an approach suitable for implementing

systems to manage business processes [65]; system and agent archi-

tectures designed to ensure maximum flexibility to adapt as the busi-

ness process changes; provides a method for designing agent-oriented

business process management system, agent implementation suitable

for operation within such a system, and a technology for solving the

problem of integrating an enterprise in the performance of a business

process [66].

Other current research on negotiation can be found in [132, 40, 148, 19,

90, 34].
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2.1.7 Negotiation Models

Bilateral Negotiation Model

This model discussed in this section is the two parties, multiple issues

value scoring model defined in [105]. It is a model for bilateral negoti-

ations about a set of quantitative variables. In a two-party negotiation

sequence called a negotiation thread, offers and counter-offers are gener-

ated by linear combinations of simple functions, called tactics. Tactics

generate an offer and counter-offer considering a single criterion such as

time or resources. To achieve flexibility in negotiation, agents may wish to

change their ratings of the importance of the different criteria, and their

tactics may vary. Through Strategy an agent changes the weights of tactics

over time. Strategies combine tactics depending on the negotiation history.

Let i ∈ {a, b} represent the negotiating agents and j ∈ {1, · · · , n} the

issues under negotiation. Let xj ∈ [minj,maxj] be a value for issue j.

Each agent has a scoring function V i
j : [minj,maxj] → [0, 1] that gives

the score agent i assigns to a value of issue j in the range of acceptable

values. For convenience, scores are kept in the interval [0,1]. wi
j is the im-

portance of issue j for agent i. The weights for all agents are normalized,

i.e.
∑

1≤j≤n wi
j = 1, for all i in {a, b}. An agent’s scoring function for a

contract - that is for a value x = (x1, · · · , xn), is defined as:

V i(x) =
∑

1≤j≤n

wi
jV

i
j (xj) (2.4)
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A Service-oriented Negotiation Model

In service-oriented negotiations, the agents undertake two possible roles

that are in conflict, the client and the server. Roman letters c, c1, c2, · · · are

used to represent client agents and s, s1, s2, · · · are used for server agents.

The negotiating agents may have conflicting interests. While a client

agent wants a service as soon as possible with a low price, the server agent

desires a higher price. Besides, the server agent’s schedule may not allow

an early service date. Therefore, in terms of negotiation values, the scoring

functions of the client agent and the server agent show opposite tendencies;

for issue j, if xj, yj ∈ [minj,maxj] and xj ≤ yj, then V s
j (xj) ≤ V s

j (yj) ⇐⇒
V c

j (yj) ≤ V c
j (xj).

Once the agents have determined the set of variables over which they

will negotiate, the negotiation process between two agents consists of an

alternate succession of offers and counter offers of values for those variables.

This continues until an offer or a counter offer is accepted or an agent

terminates negotiation.

In the following definitions, xt
a→b represents the value of the offer proposed

by agent a to agent b, and xt
a→b[j] represents the value of issue j proposed

from a to b at time t.

Definition 2.1.14 (Negotiation thread). A negotiation thread between

agents a, b ∈ Agents, at time t ∈ Time, noted xt
a→b or xt

b→a, is any fi-

nite sequence of the form

{xt1
d1→e1

, xt2
d2→e2

, · · · , xtn
dn→en

} where:

1. ei = di+1, proposals alternate between both agents,

2. tk ≤ tl if k ≤ l, ordered over time,
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3. di, ei ∈ {a, b}, the thread contains only proposals between agents a

and b,

4. di 6= ei, the proposals are between agents, and

5. xti
di→ei

∈ [mindi

j , maxdi

j ] or is one of {accept, reject}.

Assume xt′
b→a is the contract that agent a would offer to agent b at the

time of the interpretation t′, and tamax is a constant that represents the

time which agent a must have completed the negotiation.

Definition 2.1.15 (Offer). The interpretation by agent a of an offer xt
b→a

sent at time t < t′, can be formalized as follows:

Ia(t′, xt
b→a) =





reject, If t′ ≥ tamax

accept, If V a(xt
b→a) ≥ V a(xt′

a→b)

xt′
b→a, otherwise

(2.5)

In order to prepare a counter offer the following families of tactics are

defined [32]:

Time-dependent: If an agent has a time deadline by which an agreement

must be reached, these tactics model the fact that the agent is likely

to concede more rapidly as the deadline approaches.

Resource-dependent: These tactics model the pressure in reaching an

agreement that limited resources (e.g. money, labor, raw material, or

any other) and the environment (e.g. number of clients, number of

servers, or economic parameters) impose upon the agent’s behavior.

Imitative: In situations where the agent is not under great pressure to

reach an agreement, the choice may be to use imitative tactics that
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protect the agent from being exploited by other agents. In this case

the counter offer depends on the behavior of the negotiation oppo-

nent.

Mediator-based Negotiation

While observing the benefits of a decentralized agent-based systems, ap-

plications show that agents which try to maximize their goals all the time

may not reach an agreement if their goals are conflicting. In these sit-

uations a mediator can be utilized for conflict resolution. Examples of

mediator-based negotiation approach are seen in [18, 119].

2.2 Analysis of Candidate Components

The kind of problems addressed in this thesis are multiobjective combina-

torial optimization problems. In the following, an analysis of the candidate

solutions described in Section 2 is provided. The goal is to come up with a

solution that satisfies all the requirements of the problem stated in Section

1.

The first candidate for a component of the solution is the conversion of

a multiobjective optimization problem into a single-objective optimization

problem by combining all the objective functions into one. This is described

in Section 2.1.1. An example of the combination of the functions into one

consists of assigning weights to each objective and then adding the weighted

values of the objective functions. The combination method is based on

some additional information about the problem. Other methods, similar

to this one, also use some additional information about the problem. The

problem formulation described in Section 1, however, does not include this
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kind of information. Since it is not assumed that this kind of information

is available, this approach cannot be used in the solution to the problem.

The next candidate is the satisficing approach. However, as it is stated

in Section 2.1.4, this approach is based on the assumption that an “aspira-

tion level” for each objective is known. Again, this kind of an assumption is

not part of the problem formulation. Therefore, a straight forward applica-

tion of the satisficing approach cannot be used. Instead, a mediator-based

negotiation mechanism is proposed to establish aspiration levels dynami-

cally. To achieve this, an agent-based approach is proposed. In this ap-

proach, as in the MAPLANT project [138], each objective and the related

constraints are transformed to a separate constraint satisfaction problem.

Each objective is represented by an agent after which the agents negotiate

solutions with the help of a mediator. Each agent uses a separate CSP

solver to find a solution that will satisfice its objective (cf. [65]).

The ATTEND project [1] also utilizes the satisficing approach. The

system monitors the performance of the negotiation to avoid phase tran-

sition regions. However, the problem domain for the ATTEND project is

limited to SAT problems. Consequently, the ATTEND system monitors

the invariants specific to the SAT problem, i.e., the ratio of the number

of clauses to the number of variables. Like the ATTEND project, special-

ized components to monitor the performance of the CSP solvers and to

detect phase transition regions are used. However, the problem domain

in this thesis is not limited to SAT, and the same kind of invariants can

not be used. Instead, one research goal is to find invariants related to the

experimental scenarios selected to demonstrate the merits of the proposed

approach. In addition, the proposed solution in this thesis differs from

the ATTEND approach such that it terminates the search gracefully upon
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the detection of a phase transition behavior in the problem and returns

the best of the available solutions up to that point. In this regard, the

proposed solution acts as an anytime algorithm. At any time during the

search, one can stop the proposed system and get a solution. Similar to

anytime algorithms, the quality of the solution returned by the proposed

system improves as it is allowed more time for the search.

In this thesis, the architecture used for the software agents is a metalevel

architecture (see Section 2.1.4). This architecture, called Self-Controlling

Software Architecture (SCSA), is a variation of the self-controlling soft-

ware model [70]. In its full implementation it includes three metalevels

(also called loops): the feedback loop, the adaptation loop, and the recon-

figuration loop. In this thesis only the feedback loop is implemented in

each agent.

One of the goals stated in Section 1 is to choose a language for speci-

fying multiobjective combinatorial optimization problems. One possibility

would be to use CML [5]. For this language, translation rules exist that

could be used for translating a model expressed in CML to the constraint

logic programming language CHIP [139] manually. Because the expres-

siveness of this language is limited, it is not possible to express structural

aspects of the user’s view of the problem formulation. Since this feature

is needed for the problem formulated in this thesis, a more expressive lan-

guage is required. Using UML/OCL instead is proposed for this purpose.

The solution is further extended by the idea of translation and provides an

automated way of translating the problem represented in a high-level mod-

eling language to the CSP programming language. Automated translation

hides the implementation details related to the CSP programming language

and allows a change in the target CSP solver with minimum effort.
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Other modeling language candidates could include Claire [77, 78] and

VISUAL SOLVER [142]. While these languages have more expressive

power than CML, as well a graphical tool support, the problem is that

these tools are closed proprietary systems. On the other hand, UML, which

is a de-facto standard language for specifying software specifications, pro-

vides a standardized XMI output, which then can be used as input to a

CSP code generator. Using such a standard modeling language allows the

utilization of off-the-shelf products like Rational Rose, Rhapsody or any

graphical UML tool.



Chapter 3

Proposed Solution

3.1 Introduction

To achieve the goals outlined in the previous sections, an experimental

system (see Figure 3.1) was implemented that consists of the solution el-

ements described in Section 2.2. The system automates the synthesis of

a satisficing program from specifications so that the program can control

its complexity, can detect the presence of a phase transition behavior, and

terminate the search gracefully.

The following tools were implemented as part of the experimental sys-

tem:

• An ontology for multiobjective optimization. The ontology is speci-

fied in UML/OCL and supports the user in the specification of opti-

mization problems (detailed in Sections 3.2 and 3.3).

• A parser that converts constraints expressed in OCL to an interme-

diate XML form.

36
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• A generic code generator that converts the constraints expressed in

the intermediate XML form and the structural constraints in XMI

(from the UML tool) to a target CSP programming language (see

Appendix 3.5 for details).

• Translation rules for the code generator for the OZ target CSP pro-

gramming language.

• Templates for creating software agents.

• Specification for an agent-based Self-Controlling Software Architec-

ture (SCSA). Section 3.6 describes SCSA. An OZ implementation for

SCSA is provided.

• A mediator-based negotiation algorithm is developed. Section 3.8

details the algorithm.

• Phase transition invariants for the experimental multiobjective opti-

mization problems are defined. Experiments are performed to assess

the appropriateness of the invariants for defining phase transition re-

gions. The invariants are used to generate problem instances showing

phase transition behavior to test the experimental system. See Sec-

tions 4.2.4 and 4.3.3 for the discovery for phase transition invariants.

3.2 Defining Structural Constraints in UML

Domain specific knowledge about the problem area is expressed in this

step. Class diagrams, as defined in the Unified Modeling Language (UML)
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Define the structural 
constraints 

(UML)

Define goals and 
global constraints 

in OCL

Translate constraints 
and goals in OCL 

to CSP programming
language

Userinputs

SystemInformation TransferUser tools and environment vs. our system

Create Agents

Execute CSP
solvers

Control the search, 
detect Phase 
Transitions

Negotiate
solutions

Specification Code Generation

Execution
Figure 3.1: Overview of the proposed solution

Specification [95], are used to define structural constraints of the problem.

Today, there are many commercial graphical UML tools available to create

these diagrams. Rational Rose, I-Logix Rhapsody, Project Technology’s

BridgePoint and Kennedy-Carter’s iUML are some of the well-known and

widely used tools. These tools can export the information captured in

the class diagrams in XML Metadata Interchange (XMI) form [94]. XMI

specification supports the interchange of any kind of metadata that can be

expressed using the Meta Object Facility (MOF) specification, including

both model and metamodel information. MOF is the OMG’s adopted

technology for defining metadata and representing it as CORBA (Common

Object Request Broker Architecture) [93] objects. In these specifications,
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metadata is a general term for data that describes information. The MOF

supports any kind of metadata that can be described using object modeling

techniques. Figure 3.2 is an example class diagram.

Company

name : String
numberOfEmployees : Integer

stockPrice() : Real

Bank
accountNumber : Integer

Person
firstName : String
lastName : String
isMarried : Boolean
isUnemployed : Boolean
age : Integer

income(Date) : Integer

customer

0..1

manager

employee employer

managedCompanies

0..*

0..* 0..*

Figure 3.2: UML Class diagram for bank example

The following is a part of XMI file that is generated for the class diagram

in Figure 3.2.

<?xml version="1.0" encoding="UTF-8"?> <XMI xmi.version="1.0">

<XMI.header>

<XMI.documentation>

<XMI.exporter>Novosoft UML Library</XMI.exporter>

<XMI.exporterVersion>0.4.19</XMI.exporterVersion>

</XMI.documentation>

<XMI.metamodel xmi.name="UML" xmi.version="1.3"/>

</XMI.header>

<XMI.content>

<Model_Management.Model xmi.id="xmi.1" xmi.uuid="-8000">
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<Foundation.Core.ModelElement.name>BankExample

</Foundation.Core.ModelElement.name>

<Foundation.Core.ModelElement.isSpecification xmi.value="false"/>

<Foundation.Core.GeneralizableElement.isRoot xmi.value="false"/>

<Foundation.Core.GeneralizableElement.isLeaf xmi.value="false"/>

<Foundation.Core.GeneralizableElement.isAbstract

xmi.value="false"/>

<Foundation.Core.Namespace.ownedElement>

<Foundation.Core.Class xmi.id="xmi.2" xmi.uuid="-7ffe">

<Foundation.Core.ModelElement.name>Bank

</Foundation.Core.ModelElement.name>

<Foundation.Core.ModelElement.isSpecification

xmi.value="false"/>

<Foundation.Core.GeneralizableElement.isRoot

xmi.value="false"/>

<Foundation.Core.GeneralizableElement.isLeaf

xmi.value="false"/>

<Foundation.Core.GeneralizableElement.isAbstract

xmi.value="false"/>

<Foundation.Core.Class.isActive xmi.value="false"/>

<Foundation.Core.ModelElement.namespace>

<Foundation.Core.Namespace xmi.idref="xmi.1"/>

</Foundation.Core.ModelElement.namespace>

<Foundation.Core.Classifier.feature>

<Foundation.Core.Attribute xmi.id="xmi.3"

xmi.uuid="-7ffc">

<Foundation.Core.ModelElement.name>accountNumber
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</Foundation.Core.ModelElement.name>

<Foundation.Core.ModelElement.visibility

xmi.value="public"/>

<Foundation.Core.Feature.ownerScope

xmi.value="instance"/>

...

</Foundation.Core.Attribute>

</Foundation.Core.Classifier.feature>

</Foundation.Core.Class>

...

</Foundation.Core.Namespace.ownedElement>

</Model_Management.Model>

</XMI.content>

</XMI>

Models saved in machine readable XMI form will be input to the OCL

parser (see Section 3.5). In the current form of XMI, there is no standard

way to store the actions (an action language) that happen in different

states of dynamic objects. Because defining an action language is outside

the scope of this thesis, if there is a need for expressing state actions in

any experiments, it will be programmed in the target CSP programming

language.
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3.3 Defining Goals and Constraints in OCL

The Object Constraint Language (OCL) Specification is described as fol-

lows. “In object-oriented modeling, a graphical model, like a class model,

is not enough for a precise and unambiguous specification. There is a need

to describe additional constraints about the objects in the model.” In this

thesis, version 2.0 of the OCL Specification which is a part of UML version

1.5 has been used. OCL is used:

• To specify invariants on classes and types in the class model.

• To describe pre and post conditions on operations and methods.

• To specify constraints on operations.

• To specify the objective functions for the optimization problem.

The standard OCL comes with pre-defined types (basic or complex) and

operations on these types. Collection types, like Set, Bag, and Sequence,

and set operations, like forAll, exists, union, and intersection, are part of

the standard OCL.

In this thesis, an ontology has been defined to extend the pre-defined

types and operations in OCL to cover concepts such as

• New data types

• Minimize, maximize functions

• List operations (lists of integers)

• Search operations
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• Templates for constraints and objective functions

Section 3.4 provides a complete list of the types and the operations that

are introduced by the ontology. A template OCL file for an easy start to

specify an optimization problem can be found in Appendix A.3.

3.4 Ontology

3.4.1 New Types

FD_VAR -- A finite domain integer variable that can be used in a

constraint satisfaction problem.

ONT_PROC -- A reference to a procedure, like a pointer to a

procedure in C programming language.

ONT_RECORD -- A structured data type

ONT_FIELD -- A labeled sub-part of an ONT_RECORD

3.4.2 New Operations

-- Creates a new finite domain integer decision variable

-- and initializes to the input..

context ONTOLOGY::ONT_NewInt(I : Integer) : FD_VAR

post:

let R: FD_VAR = I

in
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result = R

-- Creates a new finite domain integer decision variable list

-- and sets the domain of all the list members to between 0

-- and the input. The input needs to be a positive integer.

context ONTOLOGY::ONT_NewList(Size:Integer, Max : Integer) :

Sequence(FD_VAR)

pre: I > 0

post:

let L: Sequence(FD_VAR)

in

result = R

-- Creates a new array of integers and initializes the elements to

-- 0. The input needs to be a positive integer.

context ONTOLOGY::ONT_NewArray(Size:Integer) : Sequence(Integer)

def:

let L: Sequence(Integer)

pre: Size > 0 and L->size = Size and L->iterate(I | I = 0)

post:

result = L

context ONTOLOGY::ONT_PutArray(Array: Sequence(Integer),

Index:Integer, Value:Integer)

pre: Index > 0 and Index <= Array->size
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post: Array->at(Index) = Value

-- Every member of the list is mutually distinct.

context ONTOLOGY::ONT_Distinct(L : Sequence(Integer))

post: L->forAll(p1,p2 | p1 <> p2)

-- Returns the size of the input list.

context ONTOLOGY::ONT_Size(L : Sequence(Integer)) : Integer

post: result = L->size

-- Increments the value of the input integer decision variable.

context ONTOLOGY::ONT_Inc(A: FD_VAR, B: Integer)

post: A = @A + B

-- Introduces an inequality constraint for the input integer

-- decision variables.

context ONTOLOGY::ONT_NotEqual(A: FD_VAR, B: FD_VAR)

post: A <> B

-- Introduces a "less than or equal" constraint for the input

-- integer decision variables.

context ONTOLOGY::ONT_LessThanEqual(A: FD_VAR, B: FD_VAR)
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post: A <= B

-- Introduces a "greater than" constraint for the input integer

-- decision variables.

context ONTOLOGY::ONT_GreaterThan(A: FD_VAR, B: FD_VAR)

post: A > B

-- Sets the distribution strategy that will be used in the search

-- algorithm for the constraint satisfaction problem. The input

-- is a list of decision variables that will be determined as

-- part of the constraint satisfaction problem.

context ONTOLOGY::ONT_Dist(L: Sequence(FD_VAR))

-- Starts the search algorithm for the constraint satisfaction

-- problem specified by the procedure ConstraintProcedure. An

-- optional second procedure OrderProcedure is used if it is an

-- optimization problem.

context ONTOLOGY::ONT_Solve(ConstraintProcedure: ONT_PROC,

OrderProcedure: ONT_PROC)

-- Returns a record with same label and arity as R1, whose fields

-- are computed by applying the binary procedure P to all fields of

-- R1.
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Figure 3.3: Translation of UML/OCL to the CSP programming language

context ONTOLOGY::ONT_Map(R1 : RECORD, P : ONT_PROC) : ONT_RECORD

post:

R1->iterate(F | P(F))

3.5 Translation of Goals and Constraints from

UML / OCL to CSP Programming Lan-

guage

Translation of goals and constraints to CSP programming language is done

in two steps (see Figure 3.3). The OCL translator is made up of two

separate components: the OCL parser and the generic CSP code generator.

First, the OCL parser parses the OCL file and converts the domain-specific

constraints into an intermediate XML form, which is called OCL Markup
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Language (OCLML) in this thesis.

The following is an example for a constraint written in OCL:

package Bank

context c:Company

inv: c.numberOfEmployees > 50

endpackage

Figure 3.4: Schema for OCLML
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And, the following is the same constraint after parsed and transformed

to OCLML:

<OCLFile>

<package Value="Bank">

<constraint>

<classifierContext Value="c">

<secondaryName Value="Company"/>

</classifierContext>

<INVExpression Value="">

<binaryOperator Operation="GREATER">

<leftOperand>

<unaryOperator Operation="">

<postfixExpression>

<primaryExpression>

<propertyCall Value="c"/>

</primaryExpression>

<propertyCallList>

<propertyCall

Value="numberOfEmployees"

Type="DOT"/>

</propertyCallList>

</postfixExpression>

</unaryOperator>

</leftOperand>

<rightOperand>

<unaryOperator Operation="">

<postfixExpression>
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<primaryExpression>

<oclObject Value="50"/>

</primaryExpression>

</postfixExpression>

</unaryOperator>

</rightOperand>

</binaryOperator>

</INVExpression>

</constraint>

</package>

</OCLFile>

A schema is provided to validate the intermediate files in OCLML (See

Figure 3.4).

Lex (version 3.3.3.136) and Yacc (version 3.3.3.138) utilities from Mor-

tice Kern Systems, Inc. were used to generate the OCL parser. Appendix

A.6.1 includes a complete listing of the Lex (lexical analyzer) file and the

reserved keywords for OCL. Appendix A.6.3 includes a complete listing of

the Yacc (production rules) file.

3.5.1 CSP Code Generation

After the constraints and the objective functions that are expressed in OCL

are parsed, the generic CSP code generator translates the constraints in

OCLML form to the target CSP programming language using a translation

rules file for the target language (see Figure 3.6). The separation of the

parser from the code generator and the use of translation rules file make the

OCL Translator flexible enough to generate CSP code for different target
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Figure 3.5: OCLML tree generated by the OCL Translator

CSP programming languages.

In this thesis, the translation rules file for OZ language is provided

for demonstration. OZ has been selected as the target CSP programming

language, because;

• It supports concurrency.

• It has an open architecture and the source code is publicly available.

• It supports integration with other programs written in different pro-

gramming languages, e.g. C, C++.
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• It comes with a run-time debugging environment called Mozart.

• It provides a graphical user interface that helps to monitor the progress

of execution.

Table 3.1 shows the high-level function GenerateCSPCode, that gener-

ates the CSP code, given an XMI file, an OCLML file, and a translation

rules file. Table 3.2 shows the main function WalkOCLMLTree, that walks

the OCLML tree and generates code for each UML class in the optimization

problem. Before walking the OCLML tree, the code generator extracts the

member variables of the UML classes and the associations among the UML

classes by walking through the XMI tree. Function WalkUMLAssociation

updates the UML classes in the OCLML tree with the member variables

and the associations, such as inheritance and containment relationships,

obtained from the XMI tree.

Figure 3.6: Schema for the translation rules file
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Table 3.1: Listing for function GenerateCSPCode
proc GenerateCSPCode(fileNameXMI, fileNameOCLML,

fileNameTransRules)
XMITree = LoadXMIFile(fileNameXMI)
OCLMLTree = LoadOCLMLFile(fileNameOCLML)
Rules = LoadTranslationRulesFile(fileNameTransRules)

WalkOCLMLTree(OCLMLTree, Rules, XMITree))
end

Table 3.2: Listing for function WalkOCLMLTree
proc WalkOCLMLTree(OCLMLTree, TranslationRules, XMITree)

foreach association in XMITree do
WalkUMLAssociation(association, OCLMLTree, TranslationRules)

endfor

foreach class in OCLMLTree do
WalkUMLClass(class, TranslationRules)

endfor
end

Table 3.3 lists function WalkUMLClass which creates a source file and

walks through the sub-elements of the UML class. For each sub-element,

it calls function WalkOCLElement which performs the actual code gener-

ation. Table 3.4 lists function WalkOCLElement. First, WalkOCLElement

finds the translation rule for the given OCLElement. Next, it calls function

WalkConditionalConversionRule to check whether or not the OCLEle-

ment requires special handling. For example, the translation rules file pro-

vided for the OZ language handles ontology members defined in Section

3.4, such as ONT-Solve, differently than any regular procedure call defined

in OCL. If there is special code to be generated for the OCLElement, then

WalkConditionalConversionRule handles it and returns true. If not,

WalkOCLElement generates the code that will come before the element.
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Table 3.3: Listing for function WalkUMLClass
proc WalkUMLClass(UMLClass, TranslationRules)

OutputFile = OpenFile(UMLClass.name)

foreach element in UMLClass.children do
WalkOCLElement(element, TranslationRules, OutputFile)

endfor

CloseFile(OutputFile)
end

Table 3.4: Listing for function WalkOCLElement
proc WalkOCLElement(OCLElement, TranslationRules, OutputFile)

Rule = FindTranslationRuleInfo(OCLElement.name)

if WalkConditionalConversionRule( Rule.ConditionalConversionRules,
OCLElement, OutputFile) == true then

return
endif

WalkConversionRule(Rule.OpenScope, OCLElement, OutputFile)
foreach element in OCLElement.children do

WalkOCLElement(element, TranslationRules, OutputFile)
endfor
WalkConversionRule(Rule.CloseScope, OCLElement, OutputFile)

end

Then, it calls itself recursively for each sub-element of OCLElement.

Finally, WalkOCLElement generates the code that will come after the ele-

ment.
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3.6 Architecture for Software Agents

3.6.1 Background

In the proposed solution, a separate software agent represents each ob-

jective in the multiobjective optimization problem. “Agent” is a concept

coined in artificial intelligence. The agent concept is used as Maes has de-

fined in [81]: “An agent is a computational system which is long-lived, has

goals, sensors and effectors, decides autonomously which actions to take in

the current situation to maximize the progress towards its changing goals.”

The main goals in using software agents are to de-centralize the compu-

tation and to improve the performance in search by utilizing the adaptive

and autonomous nature of agents.

In this thesis, a variation of the self-controlling software model [70]

is used as the architecture for software agents. (See Figure 3.7 for self-

controlling software model.) The self-controlling software model regards

the software system as a plant to be controlled and models the behavior of

the plant and the environment as a dynamic system.

A dynamic system is a physical system whose state changes or evolves

from one moment of time to the next. The essence of a dynamic system

is that its output depends on the system’s state. Self-controlling software

identifies measurable inputs to the plant and classifies them as control in-

puts which control the plant’s behavior. In addition, self-controlling soft-

ware identifies disturbances which alter the plant’s behavior unpredictably;

includes a controller subsystem for changing the values of the control inputs

to the plant; and adds, if necessary, a quality of service (QoS) subsystem for

computing feedback. The controller uses this feedback to control the plant.

A self-controlling software includes three loops, each of which represents a
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Figure 3.7: Self-controlling software model

different timescale for control activity.

In a feedback loop, the controller computes the control inputs for the

plant based on the goal received from the reconfigurer and feedback re-

ceived from the QoS subsystem. In an adaptation loop, an evaluator sub-

system evaluates the behavior and performance of the plant to determine

whether the plant’s model is appropriate. If not, the evaluator uses a con-

troller designer subsystem to modify the behavior of the controller. In a

reconfiguration loop, a reconfigurer subsystem initiates structural changes

in the QoS subsystem, evaluator, controller, controller designer, or even the

plant. The reconfigurer uses a specification database for decision making

and a component database to assemble various system elements.
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3.6.2 Components of the Architecture
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Figure 3.8: Agent-based Self Controlling Software Architecture (SCSA)

The agent-based Self-Controlling Software Architecture (SCSA) proposed

in this thesis is a simplified version of the self-controlling software model

described above. Figure 3.8 shows a class diagram for SCSA. SCSA con-

tains a reconfigurer, a blackboard, and as many agents as the number of

objective functions. The reconfigurer instantiates the agents and supports
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the communication among the agents. Section 3.6.3 describes this commu-

nication in detail. During the negotiation among the agents for a solution

for the optimization problem, the reconfigurer acts as a mediator. The

reconfigurer uses a blackboard to record and process the solutions obtained

from agents. Blackboard is an architecture that was developed in the arti-

ficial intelligence community [54].

Each agent in SCSA is responsible for one objective function of the

multiobjective optimization problem. Every agent utilizes a feedback loop

described in self-controlling software model and contains a plant, a quality

of service (QoS) subsystem, and a controller subsystem. The plant is a

constraint satisfaction program that is auto-generated by the CSP code

generator implemented in this research. QoS module monitors the perfor-

mance of the constraint satisfaction program within the plant and returns

a feedback to the controller subsystem. The controller subsystem uses this

feedback to calculate the control inputs. These control inputs are used to

adjust the behavior of the CSP solver that executes the constraint satis-

faction program. Section 3.7 provides a formalization for the control in

the constraint satisfaction program. The QoS subsystem also warns the

plant if it detects a phase transition behavior in the current optimization

problem. Appendix A.1 and A.2 lists the OZ implementation for agent

and reconfigurer components of the system that were used in this thesis.

3.6.3 Communication among Components

The state transition diagram for the reconfigurer is shown in Figure 3.9.

The sequence diagram in Figure 3.10 demonstrates the sequence of

events taking place while the system executes for a multiobjective opti-

mization problem with two objectives. First, the reconfigurer instantiates
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two agents, Agent1 and Agent2, and sends setObjective messages to get

the agents to create and setup their respective CSP solvers. The reconfig-

urer and the agents run independently and utilize message ports for passing

asynchronous messages back and forth. After the agents create and setup

their CSP solvers, they send the setupDone message to the reconfigurer

and wait for the next message from the reconfigurer. Upon getting the

setupDone messages from the agents, the reconfigurer sends the soln mes-

sages to the agents to initiate their search for the optimization problem.

In response to this message, every agent activates its CSP solver by send-

ing the next message. If the CSP solver finds a solution that satisfies all

the constraints of the optimization problem, it informs its parent agent

with the nextSoln message, where the solution is encoded in the message.

In return, the agent passes the solution back to the reconfigurer with the

newSoln message. Reconfigurer sends the agent another soln message af-

ter recording the agent’s ID and the solution in its blackboard. If the CSP

solver cannot find a solution, it returns the noSoln message to the agent,

and the agent informs the reconfigurer with the the agentDone message

and terminates the CSP solver and itself. This loop continues until the

agent traverses the whole search space for the optimization problem or the

agent visits a pre-determined number of decision nodes that was set by the

reconfigurer at the beginning which is called the termination point. When

the reconfigurer gets the agentDone messages from all the agents, it se-

lects the best solution according to the negotiation algorithm described in

Section 3.8 and returns best solution to the main program.

Figure 3.11 shows the communication between an agent and its CSP

solver in detail. An agent uses one port to communicate with the recon-

figurer and another one to communicate with its CSP solver. In SCSA
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the ports are implemented by different threads. After an agent starts the

search in CSP solver with the next message, it establishes a port between

itself and the CSP solver to monitor and control the search as it is described

in Section 3.7.5. The CSP solver sends a sequence of messages to its agent

to inform it about certain events. In addition, the CSP solver passes a

number of statistics, so that the agent can adjust its control parameters

and change the execution and direction of the search if it is necessary.
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3.7 Formalization of the CSP Search Algo-

rithm as a Dynamic System

As was mentioned earlier in this thesis, our goal is to use a control metaphor

and architecture to control the time complexity of the search. Towards this

aim we need to first conceptualize the plant as a dynamic system.

A CSP is a 3-tuple, < V, D, C >, where V is the set of decision variables,

D is the set of possible values for the decision variables, and C is the set

of constraints {C1, . . . , Ct} on the decision variables [101]. A constraint

Ci contains [24] a subset of the variables var(Ci) = {Vi1 , . . . , Vij(i)} and a

relation reli, defined on this subset:

Ci = reli(Vi1 , . . . , Vij(i)) ⊆ Di1 × . . .×Dij(i) .

A finite domain is a finite set of nonnegative integers. A finite domain

problem FDP is specified in terms of a finite set of constraints without

quantifiers (like ∀,∃), such that FDP contains a domain constraint for

every variable occurring in a constraint of FDP [118]. A variable assign-

ment is a function mapping variables to integers. A solution of a FDP is

a variable assignment that satisfies every constraint in FDP . Constraint

propagation is an inference rule for finite domain problems that narrows

the domains of variables.

3.7.1 A Branch and Bound Search Algorithm for Solv-

ing a CSP

In this thesis, automatically generated CSP code (in OZ) executes a search

engine [117, 144] which is one of the system modules of the Mozart Pro-

gramming system. The search engine can solve CSPs with and without
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Figure 3.12: Flowchart for the CSP search algorithm

objective functions and implements a modified version of the branch and

bound algorithm introduced in Section 2.1.2.

The computation steps of the search engine, that is shown in Figure

3.12 are:

1. (k = 0) Create a computation space S where,

S =< V, D,C >

This is the root of the search tree. k indicates the depth of the node

within the search tree that is created and traversed by the search

engine.
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2. (k = k + 1) Local deduction: Use the updated constraints C to

narrow the domains of decision variables via local deduction.

3. Check the status of computation space S:

(a) If all the decision variables are determined (assigned a value),

report the variable assignments. At this point, the algorithm is

at a leaf node of the search tree. If more than one solution is

queried or if this is an optimization problem, continue Step 5.

(b) If there are still non-determined decision variables, continue

Step 4.

(c) If there are no possible solutions left consistent with the con-

straints in C, continue Step 5.

4. Distribution:

(a) Select a non-determined (ND) decision variable: Select

a decision variable Vi ∈ V ND, where V ND is the set of non-

determined decision variables and Dj(k) is the current domain

of the decision variable Vj at depth k, using a selection function

Sel:

Sel : 2V ND → V ND where,

Vi = Sel(2V ND
)

V ND = {Vj ∈ V |card(Dj(k)) > 1}

(b) Select a test value: Select a value or a domain specification

di(k) within the current domain Di(k) of the selected decision
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variable Vi, such that di(k) ⊂ Di(k), using a distribution strat-

egy U(Di(k)):

U(Di(k)) : 2Di(k) → Di(k) or U(Di(k))(2Di(k)) = di(k)

di(k) is a set of a single integer, card(di(k)) = 1.

(c) Create a choice point for the selected decision variable

Vi:

i. Create two new computation spaces by adding new con-

straints,

S1(k) =< V, D(k), C(k)
⋂

(Vi ∈ di(k)) >

S2(k) =< V, D(k), C(k)
⋂

(Vi ∈ (Di(k) \ di(k))) >

where,

C(k) is the intersection of the initial constraints in C and

the constraints added at each choice point before this state.

This will extend the search tree one more level.

ii. Continue Step 2 with the new computation space S1(k).

S = S1(k)

iii. Store the new computation space S2(k) in a computation

space stack.

5. Backtracking: Backtrack the search tree by removing the first com-

putation space from the computation space stack and making it S.
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Figure 3.13: The structure of the general dynamic system

If the stack is empty, it means that the entire search tree has been

traversed for a solution and the search is over.

3.7.2 General Dynamic Systems

A general dynamic system [97] GDS is an 8-tuple

GDS = (T, X, W,Q, P, f, g,≤) (3.1)

where

• T is time set with an order relation ≤,

• X and W are the input and output sets, respectively,

• Q is the set of inner states q,

• P are the input processes, functions, p : T → X,

• f is the state transition function, f : T ×Q× p → Q, and

• g is the output function, g : Q → W .

Figure 3.13 represents the structure of a general dynamic system. In

this figure, the circles represent the sets, T , X, Q, and W . The rectangles

represent the functions and processes, P , f , and g.

The state transition function f must satisfy the following properties:
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1. (consistency) f(t0, t0, q0, p) = q0

2. (semigroup) f(t2, t1, f(t1, t0, q0, p), p) = f(t2, t0, q0, p)

3. (causality) f(t, t0, q, p) = f(t, t0, q, p1), if p(τ) = p1(τ), for t0 < τ ≤ t.

3.7.3 Modeling the CSP Search Algorithm as

a Dynamic System

The branch and bound search algorithm used in this thesis can be formu-

lated as a dynamic system:

• The search algorithm is a discrete system and it is time-invariant.

• The input X is the test value di(k) at each distribution step at depth

k, where di(k) is a set of a single integer.

• W is the count of non-determined decision variables.

• Q is the set of internal states, q, of the dynamic system, s.t.

– q ⊂ DN = D1 × D2 × . . . × DN , where N is the number of

decision variables in the CSP,

– Di is the initial domain Di(k = 0) for the decision variable Vi,

– The state q can also be represented by an intersection of three

sets of constraints; a) CDi
, constraints that specify the initial

domains of the decision variables Vi, b) Cl, original constraints

that are parts of C, and c) C(k), constraints that are added to

the CSP at each choice point.

q(k) = CD1

⋂
CD2

⋂
. . .

⋂
CDN

⋂
C1

⋂
C2

⋂
. . .

⋂
CM

⋂

C(1)
⋂

C(2)
⋂

. . .
⋂

C(k − 1)
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• P , the input processes are, decision variable selection function Sel

and the distribution strategy U(Di(k)).

• g is the output function that returns the value assignments for the

decision variables,

g(q(k)) = D1(k)×D2(k)× . . .×DN(k)

• Since the search algorithm is time-invariant, state transition function

f reduces to:

f : Q×X → Q

q(k +1) =





q(k)
⋂

C(k), If search is moving down a choice point

q(k − 1), If backtracking

(3.2)

where,

C(k) =





Vi ∈ di(k), If S1 is selected at the choice point

Vi ∈ (Di(k) \ di(k)), If S2 is selected at the choice point

(3.3)

Q WXP f g Woptgopt

Figure 3.14: Extended CSP search algorithm modeled as a dynamic system
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3.7.4 Modifying the Model to Handle CSPs with

Objective Functions

If the CSP is extended with an objective function, which ranks the solutions

if there are more than one, the change is made in Step 3a of the search

algorithm defined in Section 3.7.1.

Figure 3.14 shows the modified version of the dynamic system model

defined in Section 3.7.3 to accommodate the CSP search algorithm with

an objective function:

Search = (X, W,WOpt, Q, P, f, g, gopt) (3.4)

where,

• gopt is the objective function

• Wopt is the value of the objective function for a given value assignment

Since the search algorithm is time-invariant, there is no time set T .

However, input processes P take the internal state Q as an input and the

arrow from the state circle to the input processes rectangle represents that

relation.

3.7.5 The Control of Search by an Agent

This section describes the control strategy used in each agent of the SCSA

to control the complexity of the satisficing program. It starts with an inves-

tigation of search parameters that affect the direction of search algorithm

within the search tree. Next, the results of the investigation are used to

formally define a control strategy with the control variable, the feedback,
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Figure 3.15: Search tree constructed by the branch and bound algorithm
and the search parameters

and the control equation. The discussion ends with a brief explanation of

the control implementation used in SCSA.

The complexity of the satisficing program is a function of the size of the

search tree that is constructed by the branch and bound search algorithm

described in Section 3.7.1. If it is desired to reach the sections of the search

tree concentrated with feasible solutions without traversing the entire tree,

then one needs to find a set of search parameters that controls the direction

of the search and a measure or indicator that points to the sections with

concentrated feasible solutions.

Figure 3.15 shows a search tree constructed by the branch and bound al-

gorithm and the effects of some of the search parameters on the direction of
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the search. In the figure the triangle with the dashed perimeter represents

the search tree with the root node being at the top. The primary factor in

changing the search direction is the selection function Sel that picks the

next decision variable to be distributed among the non-determined deci-

sion variables at the current decision node. Different selection functions

cause the search to move side to side horizontally. Two of the widely used

selection functions in the branch and bound algorithm are; 1) Minimum-

Suspensions, the function that selects the non-determined decision variable

that participates in most of the constraints and 2) MinimumDomain, the

function that selects the non-determined decision variable with the smallest

current domain Di(k).

The secondary factor in changing the search direction is the distribution

strategy U , which is a function of the current domain Di(k) of the selected

non-determined decision variable Vi at depth k. The effect of U is local

relative to the selection function Sel. However, U causes changes in speed

of the search in addition to the direction. If U returns a single integer

as the test value for Vi, then search becomes a depth-first search and the

vertical progress in the search tree gets faster. On the contrary, if U returns

a subset of Di(k), then the search becomes a breadth-first search and the

vertical progress slows down. In the case of returning a single integer, the

relative position of the selected integer within the current domain, which

is an ordered collection of integers, is called the split point. The split point

κ takes a value between 0.0 (associated with the smallest integer within

the current domain) and 1.0 (associated with the largest integer within the

current domain) and contributes to the horizontal move.

Experimentation showed that MinimumSuspensions as the selection

function and returning a single integer in the distribution function resulted
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in faster search results. Therefore, SCSA primarily uses the

MinimumSuspensions function. When more than one decision variable

participate in maximum number of constraints, SCSA uses MinimumDomain

function to break the tie condition.

However, there is not one magic value for the split point κ that shows

an improvement on the performance for all search trees. Therefore, κ is

selected as a variable to be controlled by the control strategy used in SCSA.

Next, a feedback variable is defined. Feedback is used as a measure that

points to the sections with concentrated feasible solutions to the satisficing

problem. The goal is to steer the search towards the sections of the search

tree, where the percentage of feasible solution leaves are higher than the

percentage of non-solution leaves. As a result, the feedback is defined as

in Equation 3.5, where S is the number of feasible solution leaves and F

is the number of non-solution leaves visited in the last control cycle. Here,

feedback can take any value between 1.0 (all feasible solutions) and -1.0

(no feasible solutions).

feedback =
S − F

S + F
(3.5)

After feedback, a control equation is defined for the calculation of the

control variable κ. Figure 3.16 demonstrates the Proportional-Derivative

(PD) control used in SCSA. Equation 3.6 details the calculation of the

control variable κ, where ∆ = goal − feedback, KP and KD are the pro-

portional and derivative control constants respectively:

κn+1 = κn + KP ×∆ + KD × δfeedback

δn
(3.6)

The control strategy is implemented in each agent. The selected CSP

solver needs to be modified to take the control variable κ as a dynamic
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Figure 3.16: PD control in SCSA

input and needs to provide access to vital search statistics. Some of the

important search statistics are the number of decision points, the number

of feasible solutions and the number of non-solutions visited in the last

control cycle, and the depth of the current decision point. As part of

this thesis, Search.oz file in the Mozart system library was modified to

implement the control strategy in OZ.

Finally, a termination policy for monitoring the status of the CSP solver

and detecting phase transition behavior in potentially hard problems is

defined. The search statistics obtained from the CSP solver is used to

calculate the number of decision points ∆dp visited since the last significant

event. The significant event can be either the beginning of the search, if

no feasible solutions are found so far, or the last feasible solution, if there

is one found. If any point in the search ∆dp exceeds a termination point

set by the reconfigurer, the agent returns an agentDone message to the

reconfigurer and terminates the search.

The results from the experimental systems described in Sections 4.2

and 4.3 showed that the selection of the initial value κ0 for the control

variable is very important for the performance of the search.
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Table 3.5: Listing for function NegotiateSolution
func NegotiateSolution(LIST blackboard)

LIST agentStacks[nObjectives], nonDominatedSolns

if blackboard.count == 0 then
return NO-SOLUTION

endif

agentStacks = SplitSolutionsByAgent(blackboard)
nonDominatedSolns = FindNonDominatedSolutions(agentStacks)

return OrderNonDominatedSolutions(agentStacks,nonDominatedSolns)
end

3.8 A Mediator-based Negotiation Algorithm

In this thesis, negotiation is used to determine a value assignment of the

decision variables of the optimization problem when the objective functions

conflict with each other. The goal of the negotiation is to find the best-

compromise non-dominated solution from the non-dominated solutions set

as it is defined in Definition 2.1.5 based on a negotiation criterion.

In SCSA the reconfigurer is the mediator for the negotiation. The

reconfigurer records the solutions that are returned by all agents in a list

called blackboard. Every record contains a solution and the ID of the

agent that has returned this solution. If an agent has stopped its search

for a solution prematurely because of reaching the termination point, the

last record in the stack for that agent contains a premature termination flag

instead of a solution. The negotiation algorithm does not rely on all the

agents to be done with the search. The reconfigurer can select a solution

on demand of the main program as long as there is at least one solution
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recorded in the blackboard.

Table 3.5 lists the function NegotiateSolution, which is the high

level function that implements the negotiation algorithm. First, the al-

gorithm splits the solutions listed in the blackboard into separate lists,

agentStacks in this function, based on the agent that has returned them.

The solutions in each list in agentStacks are ordered from best to worst

by the value of the objective function that is implemented by that agent.

Next, the negotiation algorithm finds the non-dominated solutions among

the ones listed in agentStacks. Finally, the algorithm orders and selects

the best-compromise non-dominated solution according to the negotiation

criterion.

The following sample multiobjective optimization problem will help

demonstrating the details of the algorithm:

Max O1 = 3 ·X + Y

Max O2 = X · (10−X) + Y

s.t. X 6= Y

X ∈ {1 . . . 9}
Y ∈ {1 . . . 9}

Table 3.6 displays a partial list of the solutions found for the multiob-

jective optimization problem defined above. This is the blackboard list

that is passed to function NegotiateSolution as an input. The solution

at the top of the table represents the last solution returned by any agent.

After the solutions in blackboard are split into separate lists, the new

lists are passed to function FindNonDominatedSolutions to find the non-

dominated solutions. Table 3.7 shows a listing of FindNonDominatedSolutions.

FindNonDominatedSolutions calls function TestSolutionForNonDominance
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Table 3.6: Partial listing of the solutions for the optimization problem
defined by O1 = 3 ·X + Y and O2 = X · (10−X) + Y

Agent ID Soln[X,Y] O1 = 3 ·X + Y O2 = X · (10−X) + Y
1 9,8 35 17
1 9,7 34 16
2 5,9 24 34
2 4,9 21 33
1 8,9 33 25
1 8,7 31 23
2 4,8 20 32
2 4,7 19 31
1 7,9 30 30
2 3,9 18 30
1 7,8 29 29
2 3,8 17 29
1 6,9 27 33

Table 3.7: Listing for function FindNonDominatedSolutions
func FindNonDominatedSolutions(LIST agentStacks)

LIST nonDominatedSolns

for I = 1 to nObjectives do
for S = 1 to agentStacks[I].count do

TestSolutionForNonDominance(agentStacks[I,S], nonDominatedSolns)
endfor

endfor

return nonDominatedSolns
end
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Table 3.8: Listing for function TestSolutionForNonDominance
proc TestSolutionForNonDominance(sol, LIST nonDominatedSolns)

BOOL isNDsolution = true
if nonDominatedSolns.count == 0 then

nonDominatedSolns = sol
elseif sol != prematurelyTerminated then

for S = 1 to nonDominatedSolns.count do
comparisonRes = CompareSolutions(nonDominatedSolns[S], sol)
if comparisonRes == BETTER then

isNDsolution = false
elseif comparisonRes == WORSE then

ListRemove(nonDominatedSolns, nonDominatedSolns[S])
endif

endfor
if isNDsolution == true then

ListAppend(nonDominatedSolns, sol)
endif

endif
end

to compare a given solution agentStacks[I,S], which is the Sth best

solution returned by the I th agent, against all other solutions that are

found to be non-dominated up to that point. If the current solution

agentStacks[I,S] is found to be a non-dominated solution by

TestSolutionForNonDominance, then the current solution is added to the

nonDominatedSolns list as well.

Table 3.8 shows a listing of function TestSolutionForNonDominance.

Two inputs to TestSolutionForNonDominance are sol, the next solution

that is tested to be non-dominated or not and nonDominatedSolns, the

list of solutions that are considered to be non-dominated up to this point.

In TestSolutionForNonDominance, sol is compared against each solu-

tion in nonDominatedSolns using function CompareSolutions. (See Ta-

ble 3.10 for a listing of CompareSolutions.) If sol is better than a solution
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(nonDominatedSolns[S]) in nonDominatedSolns, then nonDominatedSolns[S]

is removed from nonDominatedSolns. If none of the solutions in

nonDominatedSolns are better than sol, then sol is added the

nonDominatedSolns list.

Table 3.9 displays the complete list of the non-dominated solutions

found by FindNonDominatedSolutions for the multiobjective optimiza-

tion problem defined above.

After the non-dominated solutions NonDom are determined, function

OrderNonDominatedSolutions (listed in Table 3.11) selects the

best-compromise solution among them. OrderNonDominatedSolutions

uses an imitative tactic as a selection criterion. (See Section 2.1.7 for

a brief definition for imitative tactics.) Equation 3.7 summarizes the se-

lection criterion used by OrderNonDominatedSolutions, where OVi(S) is

the value of the ith objective function for solution S = [X1, . . . , XN ], O is

the number of objectives, and SiB is the solution that gives the best value

for OVi. Using this algorithm, OrderNonDominatedSolutions selects a

solution where each objective function OVi compromises the least from its

best possible value. This is similar to the Utopian Approach [146], where

the agents’ best-compromise solution is defined as the agents’ most prefer-

able solution that is closest to the utopian point and the utopian point is

Table 3.9: Non-dominated solutions for the optimization problem defined
by O1 = 3 ·X + Y and O2 = X · (10−X) + Y

Agent ID Soln[X,Y] O1 = 3 ·X + Y O2 = X · (10−X) + Y
1 9,8 35 17
1 8,9 33 25
1 7,9 30 30
1 6,9 27 33
2 5,9 24 34
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Table 3.10: Listing for function CompareSolutions
func CompareSolutions(sol1, sol2)

BOOL allBetter = true, allWorse = true
for I = 1 to nObjectives do

if GetObjectiveValue(I, sol1) ≥ GetObjectiveValue(I, sol2) then
allWorse = false

else
allBetter = false

endif
endfor
if allBetter = true then return BETTER
elseif allWorse = true then return WORSE
else return NON-DOMINATED
endif

end

defined as z∗ = [S1B
, S1B

, . . . , SOB
].

min SumOfSquares =
i=O∑

i=1

(
OVi(S)−OVi(SiB)

OVi(SiB)
)2 (3.7)

s.t. S ∈ NonDom (3.8)

If each agent returns a single solution and they are different, then the

algorithm picks the solution that arrived last.

In the example problem above, OrderNonDominatedSolutions selects

the solution [X = 7, Y = 9] which gives objective values of OV1([X =

7, Y = 9]) = 30 and OV2([X = 7, Y = 9]) = 30, as the best solution.
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Table 3.11: Listing for function OrderNonDominatedSolutions
func OrderNonDominatedSolutions(LIST agentStacks,

LIST nonDominatedSolns)
INT bestSolIdx = 1
REAL bestSumOfSquares = ∞
for S = 1 to nonDominatedSolns.count do

REAL sumOfSquares = 0.0
for I = 1 to nObjectives do

REAL bestValue = GetObjectiveValue(I, agentStacks[I,1])
REAL newValue = GetObjectiveValue(I, nonDominatedSolns[S])
REAL percentChange = (bestValue - newValue)/ bestValue
sumOfSquares = sumOfSquares + percentChange * percentChange

endfor
if bestSumOfSquares < sumOfSquares then

bestSumOfSquares = sumOfSquares
bestSolIdx = S

endif
endfor

return nonDominatedSolns[bestSolIdx]
end



Chapter 4

Verification and

Demonstration

4.1 Introduction

An experimental system was implemented and tested on two scenarios to

evaluate the approach specified in this thesis; a job scheduling problem

(see Section 4.2) and a fixture design utility problem (see Section 4.3).

Problem formulations were specified using the UML/OCL representation.

The formulations were automatically translated to the selected Constraint

Satisfaction Problem (CSP) language OZ and then used by the system to

find satisficing solutions. The goal was to provide a proof-of-concept of

automating the development of such a self-controlling satisficing program

that (1) was applicable to various multiobjective optimization problems

and (2) had the ability to control its own complexity by controlling the

search direction and detecting phase transition regions to terminate the

search gracefully. The first requirement was satisfied by demonstrating

that the same system can be used in two different problem domains. The

82
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second requirement was satisfied by testing the experimental system on

both hard and easy regions in order to show its ability to detect phase tran-

sition regions. In each of the scenarios, the phase transition phenomenon

was investigated and a model for phase transition was developed. Later,

these models were used to generate test data for the experimental sys-

tem. Known benchmark approaches implemented in Mozart Programming

System version 1.3.1 were used as a reference.
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4.2 Job Scheduling System

4.2.1 Problem Statement

This experiment deals with a job scheduling problem (see Figure 4.1). Each

job consists of one or more tasks and has a due date which all the tasks for

the job need to be completed by. Each task requires a single resource and

takes a certain time to be completed. There is only one of each resource

type and a resource can not be shared by more than one task at the same

time. The objectives are to complete all the jobs as soon as possible and to

prevent any given job to starve or to wait for other jobs to be completed.

Job

Resource Task

-pre

-res

1..*

1..*

1

due

1..*1

-tasks

-job

Figure 4.1: Class Diagram for the Job Scheduling System
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4.2.2 Problem Formulation

To formalize the objective functions and the constraints used in the job

scheduling experiment, we introduce the following notation:

• T - the set of all tasks

• J - the set of all jobs

• R - the set of all resources

• Dur : T → N - a function that returns the duration of a given task.

All durations are expressed in terms of natural numbers.

• Pre : T → 2T - a function that returns the set of pre-requisite tasks

for a given task.

• Due : J → N - a function that returns the due date or deadline for

the completion of a given job. All time values are expressed in terms

of natural numbers.

• LastTask : J → T - a function that returns the last task required

for the completion of a given job.

• Res : T → R - a function that maps a task to a resource. For the

simplicity of the problem, a task depends on a single resource.

• Start : T → N - a function that returns the starting date for a given

task. In our problem, starting dates for the tasks are the decision

variables.
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Objective 1: Minimize the end date for the last job that is com-

pleted.

Min EndDate = maxt∈T (Start(t) + Dur(t))

s.t. ∀t ∈ T, ∀p ∈ Pre(t) : Start(p) + Dur(p) ≤ Start(t)

∀j ∈ J, p = LastTask(j) : Start(p) + Dur(p) ≤ Due(j)

∀t1, t2 ∈ T : if Start(t1) ≤ Start(t2)

and Start(t2) ≤ Start(t1) + Dur(t1)

⇒ Res(t1) 6= Res(t2)

Objective 2: Minimize the average time to complete a job.

Min AvgEndDate =

∑
j∈J

Start(LastTask(j))

|J |

s.t. ∀t ∈ T, ∀p ∈ Pre(t) : Start(p) + Dur(p) ≤ Start(t)

∀j ∈ J, p = LastTask(j) : Start(p) + Dur(p) ≤ Due(j)

∀t1, t2 ∈ T : if Start(t1) ≤ Start(t2)

and Start(t2) ≤ Start(t1) + Dur(t1)

⇒ Res(t1) 6= Res(t2)

4.2.3 Goals and Constraints Presented in OCL

package JobSchedule

context Scheduler def:

let Tasks : Sequence(Task) = Data::tasks

let Jobs : Sequence(Product) = Data::jobs

let DurList : Sequence() = Tasks->iterate(T : Task;

AccD : Sequence() = Sequence{} |

AccD->append( ONT_Field(ONT_Label(T), T.dur) ) )
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-- Group the tasks based on the resource that they use.

context Scheduler::GetTasksOnResource(Ts : Sequence(Task)) :

ONT_RECORD

def:

let D = ONT_NewDictionary()

pre: Ts->iterate(T |

if ONT_HasField(T, res)

then ONT_DictionaryPut(D, T.res, ONT_Append(ONT_Label(T),

ONT_DictionaryGet(D, T.res, nil)))

endif)

post: ONT_DictionaryToRecord(tor, D)

-- Allocate memory for the decision variables.

context Scheduler::GetStart(Ts : Sequence(Task)) : ONT_RECORD

post:

let TaskNames = ONT_Map(Ts, Label)

in ONT_NewRecord(start, TaskNames, ONT_Field(0,FD.sup))

-- List of all constraints

context Scheduler::Constraints (Start : Sequence(Integer)) :

ONT_PROC

def:

let DurRecord : ONT_RECORD = ONT_ListToRecord(dur, DurList)

pre: PC = GetStart(Tasks)
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pre: Constraint1(DurRecord, PC)

pre: Constraint2(DurRecord, PC)

pre: Constraint3(DurRecord, PC)

post: ONT_Dist(PC)

-- Presedence constraints.

context Scheduler::CheckPreTasks(PreTasks : Sequence(Task),

L : String, DurRecord : ONT_RECORD, Start : ONT_RECORD)

post:

PreTasks->iterate(P |

ONT_LessThanEqual(Start.P + DurRecord.P, Start.L))

context Scheduler::Constraint1(DurRecord : ONT_RECORD, Start :

ONT_RECORD)

post: Tasks->iterate(T |

if ONT_HasField(T, pre)

then CheckPreTasks(T.pre, ONT_Label(T), DurRecord, Start)

endif)

-- Duration and job due date constraints

context Scheduler::CheckDueDate(DurRecord : ONT_RECORD,

Start : ONT_RECORD,

J : Job)

def:

let P : String = J.job
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post: ONT_LessThanEqual(Start.P + DurRecord.P, J.due)

context Scheduler::Constraint2(DurRecord : ONT_RECORD, Start :

ONT_RECORD)

post: Jobs->iterate(J |

CheckDueDate(DurRecord, Start, J))

context Scheduler::Constraint3(DurRecord : ONT_RECORD, Start :

ONT_RECORD)

def:

let TasksOnResources : ONT_RECORD = GetTasksOnResource(Tasks)

post: ONT_SerializedDisjoint(TasksOnResources, Start, DurRecord)

-- Find the completion time of the last job. -- Assumption

is that the input is a record of integer completion dates.

context Scheduler::obj1Value(Ts : ONT_RECORD) : Integer

def:

let TaskList = ONT_RecordToList(Ts)

post:

let Max = TaskList->iterate(TItem; AccM : Integer = 0 |

ONT_Max(AccM , TItem))

in Max

-- First objective function that minimizes the completion date

-- of tasks.
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context Scheduler::objective1()

post: ONT_Minimize(obj1Value)

-- Find the average completion time for all jobs.

context Scheduler::JobCompletionDate(Ts : ONT_RECORD, Jname :

String) : Integer

post: Ts.Jname

context Scheduler::obj2Value(Ts : ONT_RECORD) : Integer

post:

let Total = Jobs->iterate(J; AccM : Integer = 0 |

ONT_Inc(AccM, JobCompletionDate(Ts, J.job)))

in Total / Jobs->size

-- Second objective function that minimizes the average

-- completion job for all jobs.

context Scheduler::objective2()

post: ONT_Minimize(obj2Value)

endpackage
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4.2.4 Empirical Calculation of the Phase Transition

Regions

The search for phase transition variables, or order parameters, as Cheese-

man refers to, for the job scheduling problem started with an analysis of the

test parameters; number of jobs, number of tasks, duration of tasks, due

date for jobs, number of resources, number of tasks contained in each job.

Analysis and experimentation show that computation time to find lack of

a solution or at least one solution depends on the size of the problem as

well as the combination of certain test parameters.

The upper bound of the overall size of the search space for the job

scheduling problem can be expressed by Equation 4.1, where Tasks(j) :

J → 2T , a function that returns the subtasks of a job j.

Space =
∏

j∈J

(
∏

t∈Tasks(j)

(Due(j)− ∑

p∈Pre(t)

Dur(p)−Dur(t))) (4.1)

This upper bound can be further lowered, if the resources used by the tasks

are limited. In the job scheduling problem there is one of each resource type

and a resource can not be shared by multiple resources. This limitation on

the resources is a critical factor for the computation time. Equation 4.2

shows the initial candidate variable VRC
that was tested to be the phase

transition variable, where Res−1(r) : R → 2T is a function that returns all

the tasks that use the resource r and RC is the critical resource, which is

used by most of the tasks.

VRC
=

∑
t∈Res−1(RC) Dur(t)

Due(j)
(4.2)
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When VRC
> 1.0, there is no solution. However, the definition of VRC

does not count for the prerequisite tasks of the tasks that use RC . Even

if VRC
≤ 1.0, it is not guaranteed that a solution exists. Considering the

existence of prerequisite tasks, the definition of VRC
was modified as in

Equation 4.3, where tC is the critical task, which uses the resource RC and

has the prerequisite tasks with the longest durations and jC is the critical

job, which has the earliest due date.

V p
RC

(J, T, R) =

∑
t∈Res−1(RC) Dur(t) +

∑
t′∈Pre(tC) Dur(t′)

Due(jC)
(4.3)

When the experimental system ran on a set of test data generated with

V p
RC
∼ 1.0, it started to show phase transition behavior.

4.2.5 Experimental Setup

A test data generator was implemented based on the empirical results

obtained in Section 4.2.4. The data generator required six test parameters;

1) the number of jobs, 2) the due date for each job, 3) the maximum number

of tasks involved in a single job, 4) the maximum duration of each task, 5)

the maximum number of different types of resources, and 6) the maximum

number of resources in each type.

The test data generator was configured to use fixed values for the num-

ber of jobs (4), the maximum number of tasks involved in a job (7), the

maximum duration of each task (10), the maximum number of resources

in each type (1), and the number of different types of resources (5). This

case wasn’t as hard as the well-known 10 jobs on 10 machines job-shop
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scheduling problem, but it was sufficient enough to demonstrate the phase

transition regions. Next, 50 problem instances were selected among many

instances of the job scheduling problem that were auto-generated by the

test data generator. The results of a benchmark CSP solver program that

utilized the Explorer utility in the Mozart environment were used as a

reference. (See Appendix A.4 for a complete listing of the benchmark pro-

gram). The 50 problem instances included; i) the instances that have at

least one solution, ii) the instances that do not have a solution that sat-

isfies all the constraints, and iii) the instances that demonstrate a phase

transition behavior.

The benchmark program, similar to this experimental system, used a

generic distribution strategy. (See Section 3.7.1 for a brief description of

various distribution strategies in search). The order for the next decision

variable to be distributed was determined based on the number of con-

straints that depended on that decision variable. If more than one decision

variable had the maximum number of constraints, that depended on them,

then the benchmark program selected the decision variable whose domain

was minimal. Next, the benchmark program selected the minimum value

of the domain of the decision variable as the test value.

A PC with Intel Centrino 1.4 GHz microprocessor and 512 MB RAM

was used to run the experiments. A problem instance that caused a virtual

memory error in the PC due to extensive computation was regarded as a

hard case with phase transition behavior. A typical hard case gave a virtual

memory error after the search engine traversed 1.3M decision points or

distribution steps.
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4.2.6 Analysis of the Results

The primary goal of the job scheduling experiments was to measure the

performance of the experimental system in terms of the number of compu-

tation steps to find at least one solution. To eliminate the time variation

related to the PC environment (speed, memory), distribution steps, which

are discussed in Section 3.7.1, were used as a measure for the complexity

of the problem. To measure the performance of the experimental system,

probability of false alarm (PFA), a concept from Receiver Operating Char-

acteristic (ROC) curves [52], was used as a metric.

In this thesis, PFA is defined as the probability of the experimental

system declaring a problem instance as a problem with phase transition be-

havior, while the benchmark program has found a solution or has been able

to search the entire search space (and found no solutions). Equation 4.4

shows the calculation of PFA, where S is the number of problem instances

with at least one solution, N is the number of problem instances with no

solutions, and PT |(S,N) is the number of problem instances, which the

experimental system declared as problems with phase transition behavior

given that they are known to have a solution or the space was searchable

by the benchmark problem.

PFA =
PT |(S,N)

S + N
(4.4)

To declare that a problem instance shows phase transition behavior, the

experimental system needed to reach a termination point, which has been

set prior to the execution, before completing the search in the entire search

space and couldn’t find a solution up to the termination point.
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The first set of experiments demonstrated the effects of changing control

parameters kP and kD, which were used to calculate the control variable

κ, while keeping the goal value fixed. The control variable κ was used

to calculate the test value for the decision variable that the search space

was distributed on. Initial value for the control variable κ0 was set to

be 0.0, which means the minimum value within the current domain of

the decision variable. The control variable κ was re-calculated every 500

distribution steps. Table 4.1 shows the results for goal = 1.0, κ0 = 0.0,

and τ = 500. The experimental system was run on each problem instance

multiple times with termination point varying between 250 and 100000.

The results show that control parameters have minimum effect for low

termination points, since the controller does not have enough cycles to

change the control variable to make significant change in the direction of

the search. Low termination point means low patience for the experimental

system and results in inaccurate declaration of phase transition behavior.

For high termination points PFA values are lower, since it means that the

experimental system has traversed a high percentage of the search space

by then. The use of control or the change of the direction of search makes

a difference, an improvement over non-controlled execution, kP = 0.0 and

kD = 0.0. (See Figure 4.2 for a comparison of the use of different control

parameters). Another observation is that the PFA values for different

values of control parameters converge and do not change much above a

certain value of termination point.

The second set of experiments aimed at discovering the effects of differ-

ent goal values on the search results. Table 4.2 shows the results obtained

by using control parameters values of kP = 0.35 and kD = 0.175, and an

initial value of κ0 = 0.0 for the control variable κ. Although different goal
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Figure 4.2: Job scheduling experiment: PFA as a function of termination
point and varying control parameters
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Table 4.1: Probability of false alarm (PFA) as a function of termination
point and varying control parameters: goal = 1.0, κ0 = 0.0, τ = 500

Termination kD = 0.175 kD = 0.1 kD = 0.025 kD = 0.0
Point kP = 0.35 kP = 0.2 kP = 0.05 kP = 0.0

250 0.31 0.31 0.31 0.31
500 0.31 0.31 0.31 0.31
750 0.25 0.29 0.29 0.29
1000 0.22 0.29 0.29 0.29
5000 0.19 0.17 0.22 0.19
10000 0.14 0.14 0.17 0.19
15000 0.11 0.11 0.11 0.19
25000 0.11 0.11 0.11 0.17
50000 0.11 0.11 0.11 0.17
75000 0.11 0.11 0.11 0.14
100000 0.11 0.11 0.11 0.14

values, all being between 1.0 and 0.0, resulted in different PFA values for

low termination points, the results converged for higher termination points.

Since the feedback, calculated by (∆S−∆N)/(∆S +∆N), was always -0.1

for hard problem instances, the controller was updating the value of the

control variable κ until it reached 1.0 (the maximum).

The third set of experiments listed in Table 4.3 were targeted towards

the selection of the initial value of the control variable κ. Figure 4.4 shows

that the selection of the initial value κ0 for the control variable is more

significant on the results than the selection of the control parameter values.

Overall the experiments showed that the use of control improved the

results in terms of PFA. The selection of an initial value for the control

variable was very important and after certain values of termination point,

which are related to the size of the problem in hand, the change of the value

of PFA was insignificant. Potential improvements for the experimental

system can be; 1) to select the initial value of the control variable based
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Table 4.2: Probability of false alarm (PFA) as a function of termination
point and varying goal values: kP = 0.35, kD = 0.175, κ0 = 0.0, τ = 500

Termination
Point goal = 1.0 goal = 0.5 goal = 0.25

250 0.31 0.33 0.31
500 0.31 0.33 0.31
750 0.25 0.29 0.29
1000 0.22 0.29 0.29
5000 0.19 0.17 0.22
10000 0.14 0.14 0.17
15000 0.11 0.11 0.11
25000 0.11 0.11 0.11
50000 0.11 0.11 0.11
75000 0.11 0.11 0.11
100000 0.11 0.11 0.11

Table 4.3: Probability of false alarm (PFA) as a function of termina-
tion point and initial value of the control variable; κ0, kP = 0.35, kD =
0.175, goal = 1.0, τ = 500

Termination
Point κ0 = 0.0 κ0 = 0.5

250 0.31 0.60
500 0.31 0.58
750 0.25 0.49
1000 0.22 0.44
5000 0.19 0.36
10000 0.14 0.33
15000 0.11 0.33
25000 0.11 0.31
50000 0.11 0.31
75000 0.11 0.29
100000 0.11 0.29
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Figure 4.3: Effects of changing goal values on PFA
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Figure 4.4: Effects of changing the initial value κ0 of the control variable
on the values on PFA
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on the problem formulation, 2) to determine the value of the termination

based on the problem size, and 3) to update the search engine so that the

change in the search direction is not only valid for the sub-trees of the

current branch of the search tree.

4.2.7 Complete Results

The following tables show the complete listing of the results obtained from

the job scheduling experiments. In a results table each row corresponds

to a different problem instance and each column corresponds to a different

termination point. Problem instances are indexed 0 through 49. Each cell

indicates the result of one execution of the problem. There can be 3 results;

S, which means that there is at least one solution, N, which means that

the entire search tree has been traversed and there are no solutions, and

PT, which means that the search engine has reached the termination point

before completing the traversal of the search tree and it couldn’t find a

solution up to the termination point.
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24 S PT PT PT PT PT PT PT PT PT PT PT

25 S S S S S PT PT PT PT PT PT PT

26 S S S S S S S S S S S S

27 S S S S S S S S S S S S

28 S PT PT PT PT PT PT PT PT PT PT PT

29 S PT PT PT PT PT PT PT PT PT PT PT

30 S S S S S S S S S S PT PT

31 PT PT PT PT PT PT PT PT PT PT PT PT

32 S S S S S S S S S PT PT PT

33 S S S PT PT PT PT PT PT PT PT PT

34 S S S S S S S S S S S S

35 PT PT PT PT PT PT PT PT PT PT PT PT

36 S PT PT PT PT PT PT PT PT PT PT PT

37 S PT PT PT PT PT PT PT PT PT PT PT

38 PT PT PT PT PT PT PT PT PT PT PT PT

39 PT PT PT PT PT PT PT PT PT PT PT PT

40 S PT PT PT PT PT PT PT PT PT PT PT

41 S PT PT PT PT PT PT PT PT PT PT PT

42 PT PT PT PT PT PT PT PT PT PT PT PT

43 S S S S S S S S S S S S

44 S S S S S S S S S S S S

45 S S S S S S S S S S S S

46 S S S S S S S S S S S S

47 N N N N N N N N N N PT PT

48 N N N N N N N N N N PT PT

49 PT PT PT PT PT PT PT PT PT PT PT PT

Figure 4.5: Test results for the Job Scheduling experiment data set: kD =
0.3, kP = 0.5, κ0 = 0.5, goal = 1.0
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20 PT PT PT PT PT PT PT PT PT PT PT PT

21 S PT PT PT PT PT PT PT PT PT PT PT

22 PT PT PT PT PT PT PT PT PT PT PT PT

23 S S S S S S S S S S S S

24 S S S S S S S S S S S S

25 S S S S S S S S S S PT PT

26 S S S S S S S S S S S S

27 S S S S S S S S S S S S

28 S S S S S S PT PT PT PT PT PT

29 S S S S S S S S PT PT PT PT

30 S S S S S S S S S S S S

31 PT PT PT PT PT PT PT PT PT PT PT PT

32 S S S S S S S S S S S S

33 S S S S S S S S S S S S

34 S S S S S S S S S S S S

35 PT PT PT PT PT PT PT PT PT PT PT PT

36 S S S S S S S S S S S S

37 S PT PT PT PT PT PT PT PT PT PT PT

38 PT PT PT PT PT PT PT PT PT PT PT PT

39 PT PT PT PT PT PT PT PT PT PT PT PT

40 S S S S S S S S S S S S

41 S PT PT PT PT PT PT PT PT PT PT PT

42 PT PT PT PT PT PT PT PT PT PT PT PT

43 S S S S S S S S S S S S

44 S S S S S S S S S S S S

45 S S S S S S S S S S S S

46 S S S S S S S S S S S S

47 N N N N N N N N N N N N

48 N N N N N N N N N N N N

49 PT PT PT PT PT PT PT PT PT PT PT PT

Figure 4.6: Test results for the Job Scheduling experiment data set: kD =
0.1, kP = 0.2, κ0 = 0.0, goal = 1.0
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31 PT PT PT PT PT PT PT PT PT PT PT PT
32 S S S S S S S S S S S S
33 S S S S S S S S S S S S
34 S S S S S S S S S S S S
35 PT PT PT PT PT PT PT PT PT PT PT PT
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37 S PT PT PT PT PT PT PT PT PT PT PT
38 PT PT PT PT PT PT PT PT PT PT PT PT
39 PT PT PT PT PT PT PT PT PT PT PT PT
40 S S S S S S S S S S S S
41 S PT PT PT PT PT PT PT PT PT PT PT
42 PT PT PT PT PT PT PT PT PT PT PT PT
43 S S S S S S S S S S S S
44 S S S S S S S S S S S S
45 S S S S S S S S S S S S
46 S S S S S S S S S S S S
47 N N N N N N N N N N N N
48 N N N N N N N N N N N N
49 PT PT PT PT PT PT PT PT PT PT PT PT

Figure 4.7: Test results for the Job Scheduling experiment data set: kD =
0.025, kP = 0.05, κ0 = 0.0, goal = 1.0
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Figure 4.8: Test results for the Job Scheduling experiment data set: kD =
0.175, kP = 0.35, κ0 = 0.0, goal = 1.0
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4.3 Fixture Design Experiment

4.3.1 Problem Statement

In this section we describe the second experimental multi-objective opti-

mization scenario used in this thesis. It is a design problem of finding con-

nections (channel layout) between one or more integrated circuit board(s)

(or Unit Under Test - UUT) and a functional board tester (FBT). More

specifically, the goal is to find a mapping between the edge connector pins

of the UUT and the digital channels of the FBT while keeping the cost of

the system low by using a small number of assets (channels).

The inputs to the system are the edge connector pin requirements (we

will call them “pin requirements”) for one or more Unit Under Tests (UUT)

and the configuration of the tester (see Figure 4.9 for the components of the

tester). Some of the pin requirements are the digital timing, the voltage

levels that are used, and the analog capabilities that are required. The

configuration of the tester contains the data on the number and the types

of the channel cards and their positions within the chassis. The outputs

of the system are the mappings between the UUT pins and the channels

of the channel cards (for example, UUT pin 1 will be connected to the

channel 2 of third channel card).

4.3.2 Problem Formulation

To formalize the objective functions and the constraints we need to intro-

duce the following notation:

• P - the set of all UUT pins, p ∈ P
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Figure 4.9: Class Diagram for the Fixture for a Functional Board Test
System

• NP - the cardinality of the set P . It is constant for this optimization

problem.

• C - the set of all channels, c ∈ C, in the tester system. It is an

optimization variable.

• CC - the set of all channel cards in the system.

• Cont : 2C → 2CC - It maps a set of channels to their container

channel cards if the channels are assigned to any pins.

• R - the set of all possible pin requirements, r ∈ R.
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• Rec : P → 2R - the requirements function. It assigns the subset of

requirements for each pin.

• CAP - the set of all possible channel capabilities. A capability can be

digital measurement, digital sourcing, analog measurement, or analog

sourcing.

• Cap : C → 2CAP - the capability function that assigns a set of

capabilities to each channel c.

• PC : P → C ∪ {cnull} - channel assignment function. It assigns a

channel to a UUT pin. This is an optimization variable.

• fmap : R → CAP - a function that maps the pin requirements to

channel capabilities. The function is m− to− 1.

• card : Set → N - cardinality function that returns the size of a given

set.

• NCCMAX
- the maximum number of channel cards that can be inserted

in a FBT.

• cnull - null assignment for a UUT pin. This indicates that a channel

has not been assigned to the UUT pin.

Objective 1: Minimize the use of high capability channels to

decrease the cost.

Minimize UsedCap =
∑

p∈P

card(Cap(PC(p))) (4.5)
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s.t. ∀p, p′ ∈ P : p 6= p′ ⇒ PC(p) 6= PC(p′) (4.6)

∀p ∈ P, ∀r ∈ Rec(p) : fmap(r) ∈ Cap(PC(p)) (4.7)

Objective 2: Minimize the number of total channel cards used in

the system.

Minimize NCC = card(Cont(C)) (4.8)

s.t. NCC ≤ NCCMAX
(4.9)

card(PC(P )− cnull) ≤ NP (4.10)
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Goals and Constraints for Fixture Design Experiment in OCL

The following is a complete listing of OCL representation of the the con-

straints and the objective functions of the fixture design experiment.

package FXT

context Designer def:

-- C - the set of all channels in the tester system

let C : Sequence(Channel) = Data::channels

let N_C : Integer = C->size

-- CAP - the set of all capabilities supported by the tester

let CAP : Sequence() = C->iterate(Chan : Channel;

AccC : Sequence() = Sequence{} |

AccC->append( Chan.capability ) )

let P : Sequence(Pin) = Data::pins

let REQ : Sequence(PinRequirement) = Data::pinRequirements

let N_P : Integer = REQ->size

let N_CC : Integer = Data::channelCards

-- Each UUTPin will be wired to a different channel.

context Designer::Constraint1(PC : Sequence(Integer))

-- PC->forAll(p1,p2 | p1 <> p2)

post:
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ONT_Distinct(PC)

-- All the electrical requirements of a UUTPin need to ve

satisfied by -- the wired channel’s capabilities.

context Designer::Constraint2(PC : Sequence(Integer))

post:

REQ->iterate(I R |

CAP->iterate(J Ca |

if not Ca->includesAll(R)

then ONT_NotEqual(PC->at(I), J)

endif))

-- The goal is to use the low-capability, more expensive channels

-- first. The average number of capabilities that each channel has

-- is an indicator of the type of channels that are used.

context Designer::objective1Value(PCAssign : Sequence(Integer)) :

Integer

post:

let Sum = PCAssign->iterate(PCItem; AccS : Integer = 0 |

ONT_Inc(AccS , ONT_Size(CAP->at(PCItem))))

in Sum

-- The goal is to use fewer number of channel cards. This function

-- goes over the channels, finds the channel cards that the used
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-- channels belong to, and returns the count of channel cards.

context Designer::GetChanCardID(Ch : Integer) : Integer

post:

let ChItem = C->at(Ch)

in ChItem.cc

context Designer::MarkUsedChanCards(PCAssign : Sequence(Integer))

: Sequence(Integer)

def:

let UsedCC = ONT_NewArray(N_CC)

pre: PCAssign->iterate(Ch |

ONT_PutArray(UsedCC, GetChanCardID(Ch), 1))

post: UsedCC

context Designer::objective2Value(PCAssign : Sequence(Integer)) :

Integer

def:

let UsedCC = MarkUsedChanCards(PCAssign)

post:

let Count = UsedCC->iterateArr(CCItem; AccC : Integer = 0 |

ONT_Inc(AccC , CCItem))

in Count

-- List of all constraints

context Designer::Constraints (PC : Sequence(Integer)) : ONT_PROC
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pre: PC = ONT_NewList(N_P, N_C)

pre: Constraint1(PC)

pre: Constraint2(PC)

post: ONT_Dist(PC)

-- First objective function that minimizes the average number of

-- capabilities that the used channels possess. In other words,

--we like to use the less capable, less expensive channels.

context Designer::objective1()

post: ONT_Minimize(objective1Value)

-- Second objective function that minimizes the number of channel

-- cards used to prevent the cost hike.

context Designer::objective2()

post: ONT_Minimize(objective2Value)

endpackage
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4.3.3 Empirical Calculation of Phase Transition Re-

gions

We had a number of candidate phase transition variables for the fixture

design experiment. A preliminary experiment with two of the variables,

UUT pin bus size and Channel card size showed a behavior similar to phase

transition (see Section 4.3.3 for details).

Candidate variables:

• Channel card size (Number of channels on a channel card)

• UUT pin cluster size. A UUT pin cluster is a group of UUT pins

sharing similar requirements. Since they share similar requirements,

the search algorithms will most likely try to match them to the chan-

nels on the same channel card.

• UUT pin bus size UUT pins which form an address bus or data

bus are typically assigned to channels physically close to each other.

This physical closeness is important for eliminating timing differences

between different pins on a bus.

Candidate invariants:

• UUT pin cluster size / Channel card size

• UUT pin bus size / Channel card size

OZ program that demonstrates phase boundaries for Fixture De-

sign Experiment

In the following OZ program, a set of pins (or UUT pins) are assigned to

channel cards. In the input data, there are 16 pins and each channel card
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Table 4.4: Empirical results for Phase Transition in the Fixture Design
System problem
CC size Nodes visited Depth of search tree Result

1 43679 55 Completed with no solution
2 ∼ 277K 63 Completed with no solution
3 ∼ 900K 34 Gave virtual memory error
4 ∼ 900K 34 Gave virtual memory error
5 2190 17 Completed with a solution
6 62 14 Completed with a solution
7 30 14 Completed with a solution

has three channels each. Two kinds of pin requirements are used; bus pins,

where pins in the same bus need to be assigned to the same channel card,

and disjoint pins, where two disjoint pins cannot be in the same channel

card.

local Data fun {FxtGen Data}

NbPins = Data.nbPins

NbChannelCardSize = Data.nbChannelCardSize

Constraints = Data.constraints

MinNbChannelCards = NbPins div NbChannelCardSize

in

proc {$ Assign}

NbChannelCards = {FD.int MinNbChannelCards#NbPins}

in

{FD.distribute naive [NbChannelCards]}

%% Assign: Pin --> ChannelCard

{FD.tuple assign NbPins 1#NbChannelCards Assign}

%% at most NbChannelCardSize per ChannelCard

{For 1 NbChannelCards 1
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Figure 4.10: Effects of changing the channel card size on the complexity of
the problem.
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proc {$ ChannelCard}

{FD.atMost NbChannelCardSize Assign ChannelCard} end}

%% impose constraints

{ForAll Constraints

proc {$ C}

case C

of bus(X Ys) then

{ForAll Ys proc {$ Y} Assign.X =: Assign.Y end}

[] disjoint(X Ys) then

{ForAll Ys proc {$ Y} Assign.X \=: Assign.Y end}

end

end}

{FD.distribute ff Assign}

end

end in

Data = data(nbPins:16 nbChannelCardSize:3

constraints: [ bus(4 [8 11]) bus(12 [13 14 15 16])

disjoint(1 [2 3 5 7 8 10])

disjoint(2 [3 4 7 8 9 11])

disjoint(3 [5 6 8])

disjoint(4 [6 10])

disjoint(6 [7 10])

disjoint(7 [8 9])

disjoint(8 [10]) ] )

{ExploreOne {FxtGen Data}}

end}
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Using Mozart’s OZ environment, the same program was executed for

channel card sizes of 1,2,3,4,5,6, and 7 (see Figure 4.10). Table 4.4 sum-

marizes the results.

4.3.4 Experimental Setup

A test data generator was implemented based on the empirical results ob-

tained in Section 4.3.3. The data generator required four test parameters;

1) number of UUT pins, 2) number of channel, 3) maximum number re-

quirement types, and 4) the maximum number of channels per channel

card. In the experiments, the number of pins were 13, the number of chan-

nels were 16, the number of requirements types were 4, and the maximum

number of channels per channel card was 4. A total of 40 problem instances

were generated.

4.3.5 Analysis of the Results

The primary goal of the fixture design experiments was to confirm the

results and ideas obtained in the job scheduling experiments. This time

the emphasis was on the effects of control on the search results.

Table 4.5 shows the results for the use of different control parameters.

The value of goal was fixed at 0.5 and the initial value of the control

variable κ0 was 0.0. Similar to job scheduling experiments, the use of

control resulted in slightly better PFA values than the runs without control.

Due to the smaller size of the search space of the fixture design problem,

the values of the termination points to reach steady PFA values were lower

that the termination points observed in the job scheduling experiments.
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Figure 4.11: Fixture design experiment: PFA as a function of termination
point and varying control parameters



CHAPTER 4. VERIFICATION AND DEMONSTRATION 120

Table 4.5: Probability of false alarm (PFA) as a function of termination
point and varying control parameters: goal = 0.5, κ0 = 0.0, τ = 500

Termination kD = 0.175 kD = 0.5 kD = 0.0
Point kP = 0.35 kP = 1.0 kP = 0.0

250 0.89 0.89 0.89
500 0.89 0.89 0.89
750 0.89 0.89 0.89
1000 0.84 0.84 0.84
5000 0.62 0.62 0.70
10000 0.51 0.51 0.62
15000 0.38 0.38 0.51
20000 0.32 0.32 0.38
25000 0.27 0.27 0.30
50000 0.19 0.19 0.19
75000 0.14 0.14 0.14

4.3.6 Complete Results

The following tables show the complete listing of the results obtained from

the fixture design experiments. In the table each row corresponds to a

different problem instance and each column corresponds to a different ter-

mination point. Problem instances are indexed 0 through 39. Each cell

indicates the result of one execution of the problem. There can be 3 re-

sults; S, which means that there is at least one solution, N, which means

that the entire search tree has been traversed and there are no solutions,

and PT, which means that the search engine has reached the termination

point before completing the traversal of the search tree and it couldn’t find

a solution up to the termination point.
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Figure 4.12: Test results for the Fixture Design experiment data set: kD =
0.5, kP = 1.0, κ0 = 0.0, goal = 0.5
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Figure 4.13: Test results for the Fixture Design experiment data set: kD =
0.175, kP = 0.35, κ0 = 0.0, goal = 0.5
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Figure 4.14: Test results for the Fixture Design experiment data set: no
control κ0 = 0.0, goal = 0.5



Chapter 5

Conclusions

In this chapter, first contributions of this thesis are summarized. This is

followed by a summary of conclusions of research presented in this thesis.

The chapter ends with a list of suggested future research topics related to

the problem addressed here.

5.1 Contributions

Automatic synthesis of satisficing programs to solve multiobjec-

tive combinatorial optimization problems

A generic constraint satisfaction problem (CSP) code generator was

designed to automatically convert specifications for multiobjective combi-

natorial optimization problems to a number of constraint satisfaction prob-

lems expressed in a target CSP programming language. In addition to the

CSP code that specifies the new constraint satisfaction problems, the code

generator creates code that will find a satisficing solution to these problems

through negotiation and detect phase transition behavior if the particular

problem is an hard instance. Upon detection of a phase transition behavior,

124
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unlike other CSP programs, the generated satisficing program gracefully

terminates the search and returns the best solution obtained up to that

point. The capabilities of the code generator was demonstrated by using

OZ as the target CSP programming language.

The phase transition phenomenon was investigated to identify phase

transition invariants and the related computation intensive critical regions

for two experimental scenarios. Identified phase transition invariants were

used to generate hard problem instances to test the robustness of the

automatically-generated satisficing programs.

Specification for an agent-based Self-Controlling Software Archi-

tecture (SCSA) as a way of controlling complexity of a constraint

satisfaction program

When automatic translation of problem specifications into CSP code

replaces the human programmer, the automatically generated code may

never terminate due to the complexity of the CSP search. Therefore, the

replacement of manual CSP coding by a UML/OCL interface requires a

solution to the handling of the complexity of the search for a satisficing

solution. SCSA specification provides a control mechanism that is able to

monitor the performance of the CSP search engine and change the direc-

tion of search towards the regions of search space densely populated with

feasible solutions.

Objective-based agentification of multiobjective combinatorial op-

timization problems

For every objective in the original multiobjective combinatorial op-

timization problem, a different SCSA agent is utilized. This unbiased
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agentification of the objectives are especially important when the relative

weights or the priorities of the objectives are unknown. Rather than the

use of an artificial ordering of the objective functions, a mediator-based

negotiation mechanism is used to find a solution that will satisfy all the

objective functions. After finding the non-dominated solutions among a

set of feasible solutions returned by the agents, the negotiation mechanism

utilizes a negotiation approach to select the best solution among the non-

dominated ones.

Use of UML, OCL and Ontology for specifying multiobjective

optimization problems

Programming in a CSP language was replaced with a more user-friendly

and graphical Unified Modeling Language (UML). Since the graphical parts

of UML are not sufficient to express many constraints, Object Constraint

Language (OCL) can be used to extend the capabilities of UML. In addi-

tion, an OCL-based ontology that supports specifications of objective func-

tions and constraints of multiobjective optimization problems were defined.

It contains a selection of constructs typically encountered in the specifica-

tion of multiobjective optimization problems. In addition, the ontology

includes constructs to support the generation of software agents.

5.2 Conclusion

This thesis has addressed the specific problem of the automatic synthesis

of a satisficing program for a multiobjective combinatorial optimization

problem with respect to specification such that it can monitor and control

its complexity.



CHAPTER 5. CONCLUSIONS 127

The primary focus has been on multiobjective optimization problems

where the objectives conflicted and there was no prior information on the

relative importance or weights of the objectives. For such problems, typi-

cally, either a globally optimum solution does not exist or an algorithm is

not able to find it due to the high complexity of the problem.

In the absence of an algorithm that could find global optima, a satisfic-

ing technique was used. In this technique, first, the original multiobjective

optimization problem was converted to many constraint satisfaction prob-

lems (CSP). Next, each CSP was solved individually by a CSP solver that

used a branch and bound algorithm. Then, the feasible solutions for each

CSP were ordered by the respective objective functions. Finally, a ne-

gotiation algorithm was used to select one solution among these ordered

solutions that would satisfy all the CSPs.

To support this technique, an agent-based software architecture was

specified. For each objective, a different software agent was created. Each

agent independently executed the branch and bound algorithm and re-

ported the feasible solutions found to an entity called “reconfigurer.” The

reconfigurer would mediate the negotiation among agents. Anytime a so-

lution was demanded, the reconfigurer applied an imitative negotiation

approach to choose the best solution among the ones that were reported

up to that moment. The quality of the solutions improved as the system

was allowed more time for the search.

Each agent utilized both a control strategy to control the direction of

the search within the search space and a termination strategy to terminate

the search gracefully if a phase transition behavior was detected in the

CSP.

In order to develop such a satisficing program, UML/OCL was selected
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as the language in which problem specifications could be expressed. A

conversion mechanism for translating multiobjective optimization problems

to multiple constraint satisfaction problems was provided. The translation

process made use of an ontology of combinatorial optimization problems.

A generic CSP code generator was implemented as a proof of concept

for the conversion mechanism. Generic CSP code generator consisted of

two parts: 1) an OCL parser to parse the constraints in an OCL file and to

save in an intermediate XML format and 2) a configurable rule-based code

generator to take the constraints in XML file as an input and to generate

CSP code. An XML schema was defined for the intermediate XML for-

mat for constraints; the format was called OCL Meta Language (OCLML).

Another XML schema was defined for capturing the translation rules from

OCLML to any CSP programming language. The separation of the OCL

parser from the code generator and the definition of the two schemas en-

abled the possibility of targeting to any CSP programming language.

For the proof of concept, OZ was selected as the target CSP program-

ming language, and the translation rules from OCLML to OZ were pro-

vided. OZ libraries written for the branch and bound algorithm were mod-

ified to accept control input and return status information, such as the

number of decision points, the number of solutions, the number of non-

solutions, and the depth of the decision point within the search tree.

The proof of concept system was tested against two experimental sce-

narios, a job scheduling problem and a fixture design problem, with each

problem having conflicting objectives. For both problems, phase transition

invariants were identified empirically and later used to generate hard prob-

lems that showed phase transition behavior. The proof of concept system

was executed against these hard problems, and the performance of system
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was measured for different control parameters and initial conditions. The

critical control parameters, which the performance of the proof of concept

was most sensitive to were identified.

The experiments with the proof of concept system have showed that sat-

isficing programs can be automatically generated from the specifications,

that the complexity of the CSP solving algorithms can be controlled, and

that the hard problems can be detected with high probability and low

probability of false alarm.

Analysis of the test results has showed that the control strategy imple-

mented for the agents can be improved by selecting control constants and

initial conditions for the control parameters by analyzing the specifications

of the problems; that the automation of selecting a termination point used

in detecting the phase transitions in hard problems is possible; and that the

termination point can be determined by inspecting the size of the search

space according to the problem specifications.

5.2.1 Future Research

Several research issues could be addressed in the future in order to both

generalize and specialize the results of the research presented in this thesis

and of the developed experimental system.

• A model of the relationship of the control constants and the initial

conditions of the control variables to the problem specifications must

be investigated. Later, these findings can be used to modify the CSP

code generator to automatically calculate the control constants and

the initial conditions of the control variables and to generate code to

initialize the controller in an agent.
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• In this thesis, SCSA used a feedback loop for control. The use of

an adaptation loop in an agent in which a model of the plant would

be monitored and updated automatically could be investigated. The

adaptation loop might contribute to the robustness of the automati-

cally synthesized optimization algorithms.

• In the experimental system developed in this research, the termina-

tion point used to detect the hard problems was determined prior to

the execution of the CSP solver. The size of the search space for the

problem could be used to calculate the termination point. Statistical

significance of the termination point should be investigated to reduce

the probability of false alarm further.

• Run time identification of models for the phase transition invariants

for various families of combinatorial optimization problems can be

investigated. These invariants can be utilized in the quality of service

(QoS) subsystem of an agent to detect hard problems with phase

transition behavior.

• In this research, the multiobjective optimization problems were lim-

ited to combinatorial optimization problems. The experimental sys-

tem could be extended to address continuous optimization problems

as well.

• The mapping from the SCSA architecture to the target CSP program-

ming language was done manually. A way of possibly semi-automatic

mapping could be investigated.

• UML and OCL were used for specifying multiobjective optimization
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problems. It would be desirable to investigate the limits of the ex-

pressibility of these languages with respect to the class of multiob-

jective optimization problems. The expressibility could be compared

against other specification languages.



Appendix A

Source Code for the System

A.1 Agent.oz

%

% Agent.oz

%

% Executes RAACR constructs..

%

% Author: Yonet Eracar

%

% History:

% 20050128 Updated the control equation

% 20050120 Changed the message passing mechanism..

% 20040620 Creation

functor

import

FD

132
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export

’class’:Agent

define

fun {NewPortObject2 Proc}

Sin

in

thread

try

for Msg in Sin do {Proc Msg} end

catch closeException then skip end

end

{NewPort Sin}

end

class Agent

attr id

solver % Search object..

% searchStatus values: idle

% running

% terminated

% prematurelyTerminated

searchStatus:idle
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curSoln:nil % Current solution is

% always the best solution.

maxDepth:0

lastFailCount:0

lastSuccessCount:0

lastDecPointCount:0

lastSolutionPoint:0

% Communication

recPort % Port to the reconfigurer.

searchDataPort % Port to the search engine..

% Control attributes

goal

controlVar

maxControlVar

minControlVar

k_P

k_D

lastFeedback

terminationPoint:0

logFile

dataVersion

meth init(Val RecP LogFile GoalValue InitialControlVarValue

K_P K_D TerValue MaxD)
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id <- Val

recPort <- RecP

logFile <- LogFile

% Initialize the control variables and limits.

goal <- GoalValue

controlVar <- InitialControlVarValue

k_P <- K_P

k_D <- K_D

terminationPoint <- TerValue

maxDepth <- MaxD

lastFeedback <- GoalValue

maxControlVar <- 1.0

minControlVar <- 0

searchDataPort <- {NewPortObject2

proc{$ Msg}

Agent,controlMsgProc(Msg)

end}

searchStatus <- running

end

meth get_id($)

@id

end
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meth updateSearchStats

CurStats = {@solver stats($)}

in

lastSolutionPoint <- CurStats.decPoint

end

meth postStabilityProc

CurStats = {@solver stats($)}

NewDecCount = CurStats.decPoint - @lastDecPointCount

DecCountSinceLastSolution =

CurStats.decPoint - @lastSolutionPoint

in

% Update MaxD

if NewDecCount > @maxDepth then

lastDecPointCount <- CurStats.decPoint

Agent,control

end

if DecCountSinceLastSolution > @terminationPoint then

Agent,terminate(prematurelyTerminated)

end

end

meth calculateFeedback(DeltaSuccess DeltaFail $)

Diff = DeltaSuccess - DeltaFail

Sum = DeltaSuccess + DeltaFail

Feedback
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in

if Sum == 0 then

Feedback = @goal

else

Feedback = {Float.’/’ {Int.toFloat Diff}

{Int.toFloat Sum}}

end

Feedback

end

meth control

CurStats = {@solver stats($)}

Failures = CurStats.failed

Successes = CurStats.succeded

DeltaFail = Failures - @lastFailCount

DeltaSuccess = Successes - @lastSuccessCount

Feedback = Agent,calculateFeedback( DeltaSuccess DeltaFail $)

Error = @goal - Feedback

DeltaFeedback = Feedback - @lastFeedback

in

% Save the feedback for future reference..

lastFeedback <- Feedback

% Calculate the new control variable..
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controlVar <- Agent,calculateControlVariable(Error

@controlVar DeltaFeedback $)

lastSuccessCount <- Successes

lastFailCount <- Failures

end

meth calculateControlVariable(Error CurrentControlVar

DeltaFeedback $)

NewControlVar = CurrentControlVar

+ @k_P * Error

- @k_D * DeltaFeedback

in

if NewControlVar > @maxControlVar then

@maxControlVar

elseif NewControlVar < @minControlVar then

@minControlVar

else

NewControlVar

end

end

meth filterVariables(FL $)

Length = {List.length FL}

in

Length > 1

end
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meth selectValue(L $)

Length = {List.length L}

SplitPoint = {Float.toInt

{Int.toFloat Length} * @controlVar}

in

if SplitPoint < 2 then

{List.nth L 1}

elseif SplitPoint > Length then

{List.nth L Length}

else

{List.nth L SplitPoint}

end

end

meth terminate(S)

% Stop the search engine only if it is running..

if @searchStatus == running then

{@solver stop}

end

% Update the search status..

searchStatus <- S

if S == terminated then

raise closeException end

end

end
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meth controlMsgProc(Msg)

case Msg

of filter(FL)#F then

F = {self filterVariables(FL $)}

[] value(L)#Val then

Val = {self selectValue(L $)}

[] stabilityReached then

Agent,postStabilityProc

[] terminatePort then

Agent,terminate(terminated)

end

end

% Using Generic distribution..

meth distribute(Xs)

{FD.distribute

generic(order: nbSusps

filter: fun{$ D}

X = {FD.reflect.domList D}

Y

in

{Port.sendRecv @searchDataPort
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filter(X) Y}

Y

end

select: id

value: fun {$ D}

X = {FD.reflect.domList D}

Y

in

{Port.sendRecv @searchDataPort

value(X) Y}

Y

end

procedure: proc{$}

{Port.send @searchDataPort

stabilityReached}

end)

Xs}

end

meth nextSol($)

Temp

in

Temp = {@solver next($)}

% Only save the solution if it is other than nil or stopped..

if Temp \= nil andthen Temp \= stopped then
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curSoln <- Temp

end

Temp

end

meth getObjValue(Sol $)

SolValue

in

case @id

of 1 then SolValue = {self obj1Value(Sol $)}

[] 2 then SolValue = {self obj2Value(Sol $)}

[] 3 then SolValue = {self obj3Value(Sol $)}

end

SolValue

end

meth objective

case @id

of 1 then {self objective1}

[] 2 then {self objective2}

[] 3 then {self objective3}

end

end

meth messageQueue(Msg)

% If we add more messages in the future, we can extend the
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% list below...

case Msg

of setObjective then

{self initFeat}

{self objective}

[] soln then S in

S = {self nextSol($)}

% Each time send the id, so that the reconfigurer

% will know the sender.

if S == nil then

{Send @recPort agentDone(@id @searchStatus)}

% Need to kill all active ports...

{Send @searchDataPort terminatePort}

raise closeException end

elseif S == stopped then

{Send @recPort agentDone(@id prematurelyTerminated)}

% Need to kill all active ports...

{Send @searchDataPort terminatePort}

raise closeException end

else

Agent,updateSearchStats

{Send @recPort newSoln(@id S)}

end
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[] objVal(Sol ?Val) then

Val = {self getObjValue(Sol $)}

end

end

meth reportStatistics(LogFile)

CurStats = {@solver stats($)}

in

if @curSoln \= nil then

{@logFile write(vs:"Result: \n\n")}

else

{@logFile write(vs:"No Solutions!!\n\n")}

end

end

end

end
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A.2 Reconfigurer.oz

%

% Reconfigurer.oz

%

% Author: Yonet Eracar

%

% History:

% 20050123 Fixing starving thread problem.

% 20040629 Creation

%

functor

import

Open

export

’class’:Reconfigurer

define

Y

class Reconfigurer

attr

nObjectives:0 % # of objectives

blackboard:nil % reference to the blackboard

curState % States: start,idle,agent_done,end,error.

agentPorts

agents
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finalSoln

searchComplete:false

logFile:{NewCell unit}

meth init(LogOpt)

curState <- start

if LogOpt == true then

logFile <- {New Open.file

init(name:’execution.log’

flags:[write text create]

mode: mode(owner: [read write]

group: [read write]))}

end

end

meth setAgentPorts(APs As)

nObjectives <- {Record.width As}

agentPorts <- As

agents <- As

agents <- {Tuple.make compAg @nObjectives}

end

meth getSolution($)

Temp

in

if {Value.isDet @finalSoln} then
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@finalSoln

else

if @curState == endState then

Temp = Reconfigurer,selectBestSolution($)

finalSoln <- Temp

end

@finalSoln

end

end

meth closeSession

Reconfigurer, closeLogFile

raise closeException end

end

meth messageQueue(Msg)

case Msg

of agentPorts(As) then

{self setAgentPorts(As)}

[] ev_create then

{self stateMachine(ev_create)}

[] newSoln(I S) then

{self stateMachine(soln(I S))}

[] agentDone(I Stat) then

{self stateMachine(ev_agent_done(I Stat))}

end

end
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% This is the procedure that runs the state machine.

meth stateMachine(Msg)

if Msg == delete_reconfigurer then skip

else

case Msg

of soln(I S) then

if @curState == idle then

Reconfigurer,stateNewSolution(soln(I S))

else

Reconfigurer,stateError

end

[] ev_create then

if @curState == start then

Reconfigurer,stateCreate

else

Reconfigurer,stateError

end

[] ev_idle then

if {Bool.’or’ @curState == idle

{Bool.’or’ @curState == new_solution

{Bool.’or’ @curState == agent_done

@curState == create}}} then

Reconfigurer,stateIdle

else



APPENDIX A. SOURCE CODE FOR THE SYSTEM 149

Reconfigurer,stateError

end

[] ev_agent_done(I Stat) then

if @curState == idle then

Reconfigurer,stateAgentDone(I Stat)

else

Reconfigurer,stateError

end

[] ev_error then

Reconfigurer,stateError

else

Reconfigurer,stateError

end

end

end

% The following procedures contain the actions

% taken at each state. The state diagram can

% be found in the thesis..

meth stateError

curState <- error

end

meth stateCreate
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curState <- create

% Create threads for all agents..

for I in 1..@nObjectives do

{Send (@agentPorts).I setObjective}

end

% Tell all agents to start processing..

for I in 1..@nObjectives do

{Send (@agentPorts).I soln}

end

% Goto the next state

Reconfigurer,stateMachine(ev_idle)

end

meth stateIdle

curState <- idle

end

meth stateNewSolution(S)

curState <- new_solution

% Post the solution obtained from the agent..

% Mark the sender of the last solution

% Solution is in the form of soln(I,S)
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case S

of soln(I Sol) then

% Save the solution as well as the ID for

% the agent that returned this solution.

blackboard <- soln(I Sol)|@blackboard

% Tell the solution sending agent to continue..

{Send (@agentPorts).I soln}

end

% Go back to idle

Reconfigurer,stateMachine(ev_idle)

end

meth stateAgentDone(I Stat)

curState <- agent_done

% Mark the agent as done...

(@agents).I = complete

% Check whether all agents are done or not..

searchComplete <- true

for J in 1..@nObjectives do

if {Value.isDet (@agents).J} \= true then

searchComplete <- false

end
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end

if Stat == prematurelyTerminated then

Reconfigurer,

writeLogFile("Agent "#I#" is prematurely done!")

else

Reconfigurer,

writeLogFile("Agent "#I#" is done!")

end

if @searchComplete == true then

Reconfigurer, stateEnd

else

Reconfigurer,stateMachine(ev_idle)

end

end

meth stateEnd

curState <- endState

finalSoln <- Reconfigurer,selectBestSolution($)

Y = @finalSoln

Reconfigurer,closeSession

end

meth writeLogFile(S)

if @logFile\=unit then {@logFile write(vs:S#"\n")} end

end
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meth closeLogFile

if @logFile\=unit then {@logFile close} end

logFile := unit

end

meth selectBestSolution($)

case @blackboard

of nil then

nil

[] B1|Br then

case B1

of soln(I Sol) then

if Sol \= prematurelyTerminated then

Reconfigurer,negotiateSolution(@blackboard $)

else

Reconfigurer,recurseBlackboard(Br $)

end

else

nil

end

else

nil

end

end
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% Recurse the solution list until finding a solution

% other that the prematurelyTerminated flag.

meth recurseBlackboard(B $)

case B

of nil then

prematurelyTerminated

[] B1|Br then

case B1

of soln(I Sol) then

if Sol \= prematurelyTerminated then

Reconfigurer,negotiateSolution(B $)

else

Reconfigurer,recurseBlackboard(Br $)

end

else

nil

end

else

nil

end

end

% Top level negotiation method.

meth negotiateSolution(SolStack $)

AgentStacks = {Tuple.make agStacks @nObjectives}
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Sol

NonDominatedSolutions

in

% Initialize the sub-stacks to be empty list.

for I in 1..@nObjectives do

AgentStacks.I = {NewCell nil}

end

Reconfigurer,splitStack(SolStack AgentStacks)

NonDominatedSolutions =

Reconfigurer,findNonDominatedSolutions(AgentStacks $)

Sol =

Reconfigurer,orderNonDominatedSolutions

(AgentStacks NonDominatedSolutions $)

Sol

end

% Split the solutions in the blackboard to separate lists,

% where each list contains the solutions returned by a

% different agent.

meth splitStack(SolStack AgentStacks)

case SolStack

of B1|Br then

case B1

of soln(I Sol) then

if Sol \= prematurelyTerminated then

if {Access AgentStacks.I} == nil then
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{Assign AgentStacks.I Sol|nil}

else

{Assign AgentStacks.I

{List.append

{Access AgentStacks.I}

Sol|nil}}

end

end

Reconfigurer,splitStack(Br AgentStacks)

else

skip

end

else

skip

end

end

% Populates the non-dominated solutions list by comparing the

% objective values of the new solutions against the ones in

% the existing non-dominated solutions list.

meth findNonDominatedSolutions(AgentStacks $)

NonDominatedSolutions = {NewCell nil}

in

% The following loop can be optimized,

% if we pick one solution from another
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% agent each time.

for I in 1..@nObjectives do

for S in 1..{List.length {Access AgentStacks.I}} do

NextSolution = {List.nth {Access AgentStacks.I} S}

in

Reconfigurer,

testSolutionForNonDominance

(NextSolution NonDominatedSolutions)

end

end

NonDominatedSolutions

end

% If a new solution is worse than all the solutions

% in the non-dominated solutions list, it is

% dropped from consideration.

meth testSolutionForNonDominance(Sol NonDominatedSolutions)

IsNDsolution = {NewCell true}

in

% Test the border case of NonDominatedSolutions list

% being empty..

if {Access NonDominatedSolutions} == nil then

{Assign NonDominatedSolutions

Sol | nil}

else
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% Need to make sure that we do NOT

% have a non-solution at our hands.

if Sol \= prematurelyTerminated then

{Assign NonDominatedSolutions

{List.filter {Access NonDominatedSolutions}

fun{$ SolND}

Comparison =

Reconfigurer,compareSolutions(SolND Sol $)

in

if Comparison == better then

{Assign IsNDsolution false}

true

elseif Comparison == worse then

false

else

true

end

end}}

end

% If NextSolution is another candidate to be a

% non-dominated solution, it needs to be added

% to the NonDominatedSolutions list.

if {Access IsNDsolution} == true then

{Assign NonDominatedSolutions
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{List.append

{Access NonDominatedSolutions}

Sol|nil}}

end

end

end

meth compareSolutions(SolND NewSol $)

AllBetter = {NewCell true}

AllWorse = {NewCell true}

in

for I in 1..@nObjectives do

Obj = (@agents).I

SolNDValue = {Obj getObjValue(SolND $)}

NewSolValue = {Obj getObjValue(NewSol $)}

in

if SolNDValue >= NewSolValue then

{Assign AllWorse false}

else

{Assign AllBetter false}

end

end

if {Access AllBetter} then

better

elseif {Access AllWorse} then

worse
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else

noDomination

end

end

meth orderNonDominatedSolutions(AgentStacks

NonDominatedSolutions $)

BestSolutionIndex = {NewCell 1}

BestSumOfSquares = {NewCell 1000.0}

NDSolutionsList = {Access NonDominatedSolutions}

in

for S in 1..{List.length NDSolutionsList} do

SumOfSquares = {NewCell 0.0}

NewSol

in

NewSol = {List.nth NDSolutionsList S}

% Calculate the variance * (N-1) for each solution.

for I in 1..@nObjectives do

Obj = (@agents).I

BestSol = {List.nth {Access AgentStacks.I} 1}

BestValue = {Obj getObjValue(BestSol $)}

NewSolValue = {Obj getObjValue(NewSol $)}

Delta = {Int.toFloat NewSolValue - BestValue}

PercentChange = Delta / {Int.toFloat BestValue}

in

{Assign SumOfSquares
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{Access SumOfSquares} +

PercentChange * PercentChange}

end

if {Access SumOfSquares} < {Access BestSumOfSquares} then

{Assign BestSolutionIndex S}

{Assign BestSumOfSquares {Access SumOfSquares}}

end

end

{List.nth NDSolutionsList {Access BestSolutionIndex}}

end

end

end
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A.3 Template OCL File for Optimization

Problems

The following is a template OCL file that can be used as a starting point

for specifying an optimization problem.

package <ProblemName>

-- Object level globals that will be used in the constraints..

context <MainObject> def:

<Definition for globals: All let expressions>

-- Create the list for the decision variables..

context Scheduler::CreateDecisionVariableList() :

Sequence(Integer)

<Definition for the creation of decision variables list>

-- List of all constraints

context Scheduler::Constraints (DecisionVarList :

Sequence(Integer))
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: ONT_PROC

pre: DecisionVarList = CreateDecisionVariableList()

pre: Constraint1(DecisionVarList)

pre: Constraint2(DecisionVarList)

pre: Constraint3(DecisionVarList)

post: ONT_Dist(PC)

context Scheduler::Constraint1(DecisionVarList :

Sequence(Integer))

<Definition for the first constraint>

context Scheduler::Constraint2(DecisionVarList :

Sequence(Integer))

<Definition for the first constraint>

context Scheduler::Constraint3(DecisionVarList :

Sequence(Integer))

<Definition for the first constraint>
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-- Calculation of Objective Values

context Scheduler::obj1Value(Ts : ONT_RECORD) : Integer

<Definition for objective function 1>

context Scheduler::obj2Value(Ts : ONT_RECORD) : Integer

<Definition for objective function 1>

-- Objective functions (2 or more)...

context Scheduler::objective1()

post: ONT_Minimize(obj1Value)

context Scheduler::objective2()

post: ONT_Minimize(obj2Value)

endpackage
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A.4 Job Scheduling Benchmark Program

The following is a complete listing of the OZ benchmark program that is

used in the job scheduling experiment. Data section at the end was the

only changing part while running the experiments.

%

% JobSched_nbSusp.oz

%

% Solves the job scheduling problem with most suspensions

% first distribution strategy.

%

% Author: Yonet Eracar

%

local

Data

Products

fun {GetDur TaskSpec}

{List.toRecord dur {Map TaskSpec fun {$ T}

{Label T}#T.dur

end}}

end

fun {GetStart CusSpec}

local

Tasks

in

Tasks = {Map CusSpec Label}

{FD.record start Tasks 0#FD.sup}
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end

end

fun {GetTasksOnResource TaskSpec}

D={Dictionary.new}

in

{List.forAll TaskSpec

proc {$ T}

if {HasFeature T res} then

{Dictionary.put D T.res {Label T}|

{Dictionary.condGet D T.res nil}}

end

end}

{Dictionary.toRecord tor D}

end

proc {CheckPreTasks PreTasks L DurRecord Start}

{List.forAll PreTasks

proc{$ P}

Start.P + DurRecord.P =<: Start.L

end}

end

proc {Constraint1 TaskSpec DurRecord Start}

{List.forAll TaskSpec

proc{$ T}

if {HasFeature T pre } then

{CheckPreTasks T.pre {Label T } DurRecord Start}

end

end}
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end

proc {CheckDueDate DurRecord Start J}

local

P = J.job

in

Start.P + DurRecord.P =<: J.due

end

end

proc {Constraint2 Products DurRecord Start }

{List.forAll Products

proc{$ J}

{CheckDueDate DurRecord Start J}

end}

end

fun {NegScheduling Data}

TaskSpec = Data.tasks

Products = Data.customers

Dur = {GetDur TaskSpec}

TasksOnResources = {GetTasksOnResource TaskSpec}

in

proc {$ Start}

Start = {GetStart TaskSpec}

{Constraint1 TaskSpec Dur Start}

{Constraint2 Products Dur Start}

{Schedule.serializedDisj TasksOnResources Start Dur }

{FD.distribute

generic(order: nbSusps
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value: min)

Start}

end

end

in

% The following Data section needs to be

% modified for each problem instance

Data = data(tasks: [c0_0(dur:4 res:r4)

c0_1(dur:9 pre:[ c0_0] res:r2)

c0_2(dur:8 pre:[ c0_0] res:r4)

c0_4(dur:4 pre:[ c0_0 c0_2] res:r2)

c0_5(dur:3 pre:[ c0_0 c0_1 c0_2] res:r3)

c0_last(dur:0 pre:[ c0_0 c0_1 c0_2 c0_4 c0_5] )

c1_0(dur:4 res:r4)

c1_1(dur:9 pre:[ c1_0] res:r2)

c1_2(dur:8 pre:[ c1_0] res:r4)

c1_4(dur:4 pre:[ c1_0 c1_2] res:r2)

c1_last(dur:0 pre:[ c1_0 c1_1 c1_2 c1_4] )

c2_0(dur:4 res:r4)

c2_1(dur:9 pre:[ c2_0] res:r2)

c2_2(dur:8 pre:[ c2_0] res:r4)

c2_3(dur:2 pre:[ c2_0 c2_1] res:r4)

c2_4(dur:4 pre:[ c2_0 c2_2] res:r2)

c2_last(dur:0 pre:[ c2_0 c2_1 c2_2 c2_3 c2_4] )

c3_0(dur:4 res:r4)

c3_2(dur:8 pre:[ c3_0] res:r4)

c3_4(dur:4 pre:[ c3_0 c3_2] res:r2)
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c3_last(dur:0 pre:[ c3_0 c3_2 c3_4])]

customers: [c0(due:55 job:c0_last)

c1(due:55 job:c1_last)

c2(due:55 job:c2_last)

c3(due:55 job:c3_last)

]

)

{ExploreOne {NegScheduling Data}}

end
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A.5 Fixture Design Benchmark Program

The following is a complete listing of the OZ benchmark program that is

used in the fixture design experiment. Data section at the end was the

only changing part while running the experiments.

%

% fxtDesign_benchmark.oz

%

% Solves the fixture design problem with the Explorer utility.

% As a distribution strategy it select the decision variable

% with the most suspensions.

% It does not solve the original optimization problem. It rather

% searches for any solution that will satisfy the constraints.

%

% Author: Yonet Eracar

%

local

fun {FxtGen Data}

Requirements = {List.toTuple req Data.pinRequirements}

NbPins = {Width Requirements}

Capabilities = {List.toTuple cap Data.channels}

NbChannels = {Width Capabilities}

in

proc {$ PC}

PC = {FD.tuple sol NbPins 1#NbChannels}

{FD.distinct PC}

for I in 1..NbPins do
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for J in 1..NbChannels do

if {Not {List.sub Requirements.I

Capabilities.J.capability}}

then

PC.I \=: J

end

end

end

{FD.distribute generic(order: nbSusps

value:min)

PC}

end

end

Data = data(pinRequirements: [[1 2] [1] [1 3] [1 2] [3] %5

[1] [3][1 2][1][3] %10

[1] [1 2] [1 2] [1 3] [3] %15

[1 3] [1 2 3]] % 17 pins altogether

channels: [ channel(capability:[1] cc:1) % 1

channel(capability:[1] cc:1) % 2

channel(capability:[1] cc:1) % 3

channel(capability:[1] cc:2)

channel(capability:[1 2] cc:2)

channel(capability:[1] cc:2)

channel(capability:[1] cc:2)

channel(capability:[1 2 3] cc:3) % 8

channel(capability:[2 3] cc:3) % 9

channel(capability:[1 2 3] cc:3) % 10
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channel(capability:[2 3] cc:3) % 11

channel(capability:[1 2 3] cc:4) % 12

channel(capability:[1 2 3] cc:4) % 13

channel(capability:[1 2 3] cc:4) % 14

channel(capability:[1 2 3] cc:4) % 15

channel(capability:[1 2 3] cc:4)]

)

in

{Explorer.object one({FxtGen Data})}

end
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A.6 Source Code for the OCL Parser

A.6.1 Lex (.l) File for the OCL Parser

The following is a complete listing of the Lex file that contains the lexical

analyzer for the OCL parser.

%{

#include <ctype.h>

#include <stdio.h>

#include "string.h"

#include "OCLobject.h"

#include "OCLlist.h"

#include "yy2ozy.h"

int yykeyword(char *id);

int yyislegal(short xxchar);

int yylookup(char *id);

extern void OCLReportError(char * msg);

extern int isAmbiguousKeyword(int);

/*

* Macros to preprocess and return the tokens...

*/

#define copy_text(){ strcpy(yylval.LastString, yytext); }

#define token(x) { int y = x; copy_text(); return(y); }

#define ifok(x)

{ if (yyislegal(x)) token(x) else token(yylookup(yytext)); }



APPENDIX A. SOURCE CODE FOR THE SYSTEM 174

#ifdef YYLMAX

#undef YYLMAX

#endif

#define YYLMAX 1024

#ifdef YY_FATAL

#undef YY_FATAL

#endif

#define YY_FATAL(msg)

{

OCLReportError(msg);

}

%}

%p 3000

[ \t]*"--"[^\n\000]* ; /*token(TCOMMENT); */

\\([^\\\n])*\\ ;

\% token(yytext[0]);

"<"[ \t]*">" token(TNOTEQUAL);

">"[ \t]*"=" | "="[ \t]*">" token(TGREATEROREQUAL);

"<"[ \t]*"=" | "="[ \t]*"<" token(TLESSOREQUAL);

"::" token(TDCOLUMN);

".." token(TDDOT);
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"->" token(TARROW);

[0-9]+ ifok(TINT);

[0-9]+\.[0-9]* ifok(TFLOAT);

([0-9]+\.[0-9]*)[eE][-+]?[0-9]+ ifok(TEXPONENTIAL);

[ \t\n\f\r\032]+ ;

(\%)*[A-Za-z0-9_]+ token(yylookup(yytext));

/*********************************************

* This . must be at the end, to catch all

* characters that do not match the expressions

* above.

*/

. token(yytext[0]);

%%

yywrap() {

return(1);

}

/*

* NAME: isAmbiguousKeyword

*

* INPUTS: int token, the token

*
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* OUTPUT: 1, if it is an ambiguos token

* 0, otherwise

*

* AUTHOR: Yonet Eracar (yae)

*

* isAmbiguousKeyword,

*

* NOTE: This function is used in yylookup() function.

*/

int isAmbiguousKeyword(int token) {

return 0;

}

/*

* NAME: LtoMyy_resetLexer

*

* INPUTS: VOID

*

* OUTPUT: NOTHING

*

* AUTHOR: Yonet Eracar (yae)

*

* LtoMyy_resetLexer,

* initializes start states used in the .SYM Lexer.

*

* NOTE: This function is called by yyerror() in OCLYacc.y.
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*/

void yy_resetLexer() {

BEGIN INITIAL;

yy_reset();

}

/* Handle an identifier in the YY input.

This will return the correct keyword

token, if it is legal, otherwise it will

try to find out what is legal and

return that. */

int yylookup(char *id)

{

char *c;

int uscore,alphanum,t;

/* check token for special characters */

c = id;

uscore = 0;

alphanum = 1;

while (*c) {

/* note that _ and $ are considered "alphanumeric" ... */

if (*c == ’_’) uscore++;

else if (! ((*c==’$’) || isalnum(*c))) alphanum = 0;

c++;



APPENDIX A. SOURCE CODE FOR THE SYSTEM 178

}

t = yykeyword(id);

if ((t>0) && (isAmbiguousKeyword(t)

|| yyislegal((short)t)) )

return(t);

else

{

if (alphanum && yyislegal(TNAME))

return(TNAME);

return(TNAME);

}

}

/* Convert a string to upper case (in place). */

static void cvtupper(char *id)

{

char *c;

/* convert token to upper case */

c = id;

while (*c) {

if (islower(*c)) *c = toupper(*c);

c++;

}

}
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/* Keyword table. This must be sorted alphabetically. */

typedef struct {

char *name;

int token;

} KITEM;

static KITEM yykeytab[] = {

#include "yykey.txt"

};

int yykeywordTableSorted()

{

int i, last;

i = 0;

last = (sizeof(yykeytab) / sizeof(KITEM)) - 2;

while ( i < last )

{

if (strcmp(yykeytab[i+1].name, yykeytab[i++].name) < 0)

{

printf ("Keyword table is not properly sorted.\n");

printf ("Please check section around %s.\n",

yykeytab[i].name);

return (0);

}

}
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return (1);

}

/* Look up the identifier in the keyword table.

Note that we allow keywords to be abbreviated as

long as they are not ambiguous.

If a keyword is found, return the yacc token for the keyword.

If no keyword is found, return 0.

If an ambiguous one is found, return -1.

The keyword is converted

to upper case (in place!) before the search. */

int yykeyword(char * id)

{

int low,mid,high,last, c;

// if (!yykeywordTableSorted())

// {

// printf("Not sorted!");

// return -1;

// }

last = (sizeof(yykeytab) / sizeof(KITEM)) - 1;

low = 0;

high = last;

while (low <= high) {

mid = low + (high-low)/2;

/* note that an exact match is always nonambiguous */
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if ((c=strcmp(yykeytab[mid].name,id)) == 0)

{

return(yykeytab[mid].token);

}

else

{

if (c<0) low = mid + 1;

else high = mid - 1;

}

}

/* not found */

return(0);

}
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A.6.2 Keywords for the OCL Syntax

The following is a complete listing of the keywords file that contains the

tokens for the lexical analyzer of the OCL parser.

"Bag", TBAG,

"Collection",TCOLLECTION,

"Sequence", TSEQUENCE,

"Set", TSET,

"and", TAND,

"context", TCONTEXT,

"def", TDEF,

"else", TELSE,

"endif", TENDIF,

"endpackage", TENDPACKAGE,

"if", TIF,

"implies", TIMPLIES,

"in", TIN,

"inv", TINV,

"let", TLET,

"not", TNOT,

"or", TOR,

"package",TPACKAGE,

"post", TPOST,

"pre", TPRE,

"self", TSELF,

"then", THEN,

"xor", TXOR,
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A.6.3 Yacc (.y) File for the OCL Parser

The following is a complete listing of the Yacc file that contains the pro-

duction rules for the OCL parser.

%{

#include <stdio.h>

#include <string.h>

#include "OCLobject.h"

#include "OCLlist.h"

#include "OCLpackage.h"

#include "OCLconstraint.h"

#include "OCLexpression.h"

#include "ocl2oz_util.h"

%}

%token TAND

%token TARROW

%token TBAG

%token TCOLLECTION

%token TCOMMENT

%token TCONTEXT

%token TDCOLUMN

%token TDDOT

%token TDEF

%token TELSE

%token TENDIF
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%token TENDPACKAGE

%token <LastString>TEXPONENTIAL

%token <LastString>TFLOAT

%token TGREATEROREQUAL

%token THEN

%token TIF

%token TIMPLIES

%token TIN

%token <LastString>TINT

%token TINV

%token TLESSOREQUAL

%token TLET

%token <LastString>TNAME

%token TNOT

%token TNOTEQUAL

%token TOR

%token TPACKAGE

%token TPOST

%token TPRE

%token TSELF

%token TSEQUENCE

%token TSET

%token <LastString>TSTRING

%token TXOR

%union {



APPENDIX A. SOURCE CODE FOR THE SYSTEM 185

int ivalue;

char LastString [1024];

OCLobject * baseObject;

OCLlist * list;

};

%type <baseObject> additiveExpression classifierContext

%type <baseObject> collectionItem collectionType constraint

%type <baseObject> context contextDeclaration

%type <baseObject> declarator enumLiteral expression expressionItem

%type <baseObject> ifExpression isAccumulatorTypeSpecifier

%type <baseObject> isPropertyCallParameters isReturnType

%type <baseObject> isSimpleTypeSpecifier isTypeSpecifier

%type <baseObject> letExpression literal literalCollection

%type <baseObject> multiplicativeExpression number oclExpression

%type <baseObject> logicalExpression operationName package

%type <baseObject> parameterItem pathName

%type <baseObject> postfixExpression primaryExpression propertyCall

%type <baseObject> propertyCallItem propertyCallParameters

%type <baseObject> operationContext relationalExpression

%type <baseObject> returnType string simpleTypeSpecifier

%type <baseObject> typeSpecifier unaryExpression

%type <ivalue> addOperator collectionKind logicalOperator

%type <ivalue> multiplyOperator unaryOperator

%type <ivalue> relationalOperator stereotype isTimeExpression

%type <LastString> isName name
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%type <list> actualParameterList collectionList constraintList

%type <list> expressionList formalParameterList isFormalParameterList

%type <list> isQualifiers isActualParameterList letExpressionList

%type <list> nameList oclExpressions

%type <list> packageList parameterList propertyCallList qualifiers

%%

/***********************************************************

* This is the Production Rules section. More details can be

* found in Grammars Section of Functional Specification

*/

oclFile: packageList { OCLreportPackages($1); }

;

packageList: package { $$ = OCLmakeList(NULL, $1); }

| packageList package { $$ = OCLmakeList($1, $2); }

;

package: TPACKAGE pathName oclExpressions TENDPACKAGE

{ $$ = OCLprocessPackage($2, $3); }

;

oclExpressions: { $$ = NULL; }

| constraintList { $$ = $1; }
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;

constraintList:

constraint { $$ = OCLmakeList(NULL,$1); }

| constraintList constraint

{ $$ = OCLmakeList($1, $2); }

;

constraint: contextDeclaration expressionList

{ $$ = OCLprocessConstraint($1, $2); }

;

expressionList:

expressionItem

{ $$ = OCLmakeList(NULL, $1); }

| expressionList expressionItem

{ $$ = OCLmakeList($1, $2); }

;

expressionItem: TDEF isName ’:’ letExpressionList

{ $$ = OCLprocessDefExpression($2, $4); }

| stereotype isName ’:’ oclExpression

{ $$ = OCLprocessStereotypeExpression($1, $2, $4); }

;

contextDeclaration: TCONTEXT context { $$ = $2; }
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;

context: operationContext { $$ = $1; }

| classifierContext { $$ = $1; }

;

operationContext: name TDCOLUMN operationName

’(’ formalParameterList ’)’

isReturnType

{ $$ = OCLprocessOperationContext($1, $3, $5, $7); }

;

classifierContext:

name ’:’ name

{ $$ = OCLprocessClassifierContext($1, $3); }

| name

{ $$ = OCLprocessClassifierContext(NULL, $1); }

;

stereotype:

TPRE { $$ = OCL_PRE; }

| TPOST { $$ = OCL_POST; }

| TINV { $$ = OCL_INV; }

;

operationName:

name { $$ = OCLprocessUserOperationName($1); }
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| addOperator { $$ = OCLprocessOperationName($1); }

| multiplyOperator { $$ = OCLprocessOperationName($1); }

| logicalOperator { $$ = OCLprocessOperationName($1); }

| relationalOperator { $$ = OCLprocessOperationName($1); }

;

formalParameterList: { $$ = OCLmakeList(NULL, NULL); }

| parameterList { $$ = $1; }

;

parameterList: parameterItem

{ $$ = OCLmakeList(NULL,$1); }

| parameterList ’,’ parameterItem

{ $$ = OCLmakeList($1, $3); }

;

parameterItem:

name ’:’ typeSpecifier {$$ = OCLprocessParameterItem($1, $3); }

;

typeSpecifier: simpleTypeSpecifier { $$ = $1; }

| collectionType { $$ = $1; }

;

collectionType: collectionKind ’(’ simpleTypeSpecifier ’)’

{ $$ = OCLprocessCollectionType($1, $3); }
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| collectionKind ’(’ ’)’

{ $$ = OCLprocessCollectionType($1, NULL); }

;

oclExpression: letExpressionList TIN expression

{ $$ = OCLprocessOclExpression($1, $3); }

| expression { $$ = $1; }

;

isReturnType: { $$ = NULL; }

| ’:’ returnType { $$ = $2; }

;

returnType: typeSpecifier { $$ = $1; }

;

expression: logicalExpression { $$ = $1; }

;

letExpressionList: letExpression

{ $$ = OCLmakeList(NULL, $1); }

| letExpressionList letExpression

{ $$ = OCLmakeList($1, $2); }

;

letExpression: TLET name isFormalParameterList isTypeSpecifier
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’=’ expression

{ $$ = OCLprocessLetExpression($2, $3, $4, $6); }

;

isFormalParameterList: { $$ = NULL; }

| ’(’ formalParameterList ’)’ { $$ = $2; }

;

isTypeSpecifier: { $$ = NULL; }

| ’:’ typeSpecifier { $$ = $2; }

;

ifExpression: TIF expression THEN expression TENDIF

{ $$ = OCLprocessIfExpression($2, $4, NULL); }

| TIF expression THEN expression TELSE expression TENDIF

{ $$ = OCLprocessIfExpression($2, $4, $6); }

;

logicalExpression: relationalExpression

{ $$ = OCLmakeBinaryExpression(NULL,

OCL_ANY, $1, "logicalExpression"); }

| logicalExpression logicalOperator relationalExpression

{ $$ = OCLmakeBinaryExpression($1, $2, $3,

"logicalExpression"); }

;
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relationalExpression: additiveExpression

{ $$ = OCLmakeBinaryExpression(NULL, OCL_ANY,

$1, "relationalExpression"); }

| relationalExpression relationalOperator additiveExpression

{ $$ = OCLmakeBinaryExpression($1, $2, $3,

"relationalExpression"); }

;

additiveExpression: multiplicativeExpression

{ $$ = OCLmakeBinaryExpression(NULL, OCL_ANY, $1,

"additiveExpression"); }

| additiveExpression addOperator multiplicativeExpression

{ $$ = OCLmakeBinaryExpression($1, $2, $3,

"additiveExpression"); }

;

multiplicativeExpression: unaryExpression

{ $$ = OCLmakeBinaryExpression(NULL, OCL_ANY, $1,

"multiplicativeExpression"); }

| multiplicativeExpression multiplyOperator unaryExpression

{ $$ = OCLmakeBinaryExpression($1, $2, $3,

"multiplicativeExpression"); }

;



APPENDIX A. SOURCE CODE FOR THE SYSTEM 193

unaryExpression: unaryOperator postfixExpression

{ $$ = OCLprocessUnaryExpression($1, $2); }

| postfixExpression

{ $$ = OCLprocessUnaryExpression(OCL_ANY, $1); }

;

postfixExpression: primaryExpression propertyCallList

{ $$ = OCLprocessPostfixExpression($1, $2); }

| primaryExpression

{ $$ = OCLprocessPostfixExpression($1, NULL); }

;

propertyCallList: propertyCallItem

{ $$ = OCLmakeList(NULL, $1); }

| propertyCallList propertyCallItem

{ $$ = OCLmakeList($1, $2); }

;

propertyCallItem: ’.’ propertyCall

{ $$ = OCLpropertyCallItem($2, OCL_DOT); }

| TARROW propertyCall

{ $$ = OCLpropertyCallItem($2, OCL_ARROW); }

;
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primaryExpression:

literalCollection { $$ = $1; }

| literal { $$ = $1; }

| propertyCall { $$ = $1; }

| ’(’ expression ’)’ { $$ = OCLprocessInParenthesis($2); }

| ifExpression { $$ = $1; }

;

propertyCall: pathName isTimeExpression isQualifiers

isPropertyCallParameters

{ $$ = OCLpropertyCallAction($1, $2, $3, $4); }

;

isQualifiers: { $$ = NULL; }

| qualifiers { $$ = $1; }

;

qualifiers: ’[’ actualParameterList ’]’ { $$ = $2; }

;

isPropertyCallParameters: { $$ = NULL; }

| propertyCallParameters { $$ = $1; }

;

propertyCallParameters: ’(’ isActualParameterList ’)’

{ $$ = OCLprocessPropertyCallParameters(NULL, $2); }
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| ’(’ declarator isActualParameterList ’)’

{ $$ = OCLprocessPropertyCallParameters($2, $3); }

;

declarator: nameList [^ ’)’] isSimpleTypeSpecifier

isAccumulatorTypeSpecifier ’|’

{ $$ = OCLprocessDeclarator($1, $3, $4); }

;

nameList: name

{ $$ = OCLnameList(NULL, $1); }

| nameList name [^ ’)’]

{ $$ = OCLnameList($1, $2); }

;

isSimpleTypeSpecifier: { $$ = NULL; }

| ’:’ simpleTypeSpecifier { $$ = $2; }

;

isAccumulatorTypeSpecifier: { $$ = NULL; }

| ’;’ name ’:’ typeSpecifier ’=’ expression

{ $$ = OCLisAccumulatorTypeSpecifier($2, $4, $6); }

;

literal: string { $$ = OCLliteral($1); }
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| number { $$ = OCLliteral($1); }

| enumLiteral { $$ = OCLliteral($1); }

| TSELF { $$ = OCLliteral(NULL); }

;

enumLiteral: name TDCOLUMN name

{ $$ = OCLprocessEnumLiteral(NULL, $1, $3); }

| enumLiteral TDCOLUMN name

{ $$ = OCLprocessEnumLiteral($1, NULL, $3); }

;

simpleTypeSpecifier: pathName

{ $1->SetType(OCLtype_SIMPLETYPESPECIFIER); $$ = $1; }

;

literalCollection: collectionKind ’{’ collectionList ’}’

{ $$ = OCLprocessLiteralCollection($1, $3); }

| collectionKind ’{’ ’}’

{ $$ = OCLprocessLiteralCollection($1, NULL); }

;

collectionList: collectionItem

{ $$ = OCLmakeList(NULL, $1); }

| collectionList ’,’ collectionItem

{ $$ = OCLmakeList($1, $3); }

;
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collectionItem:

expression { $$ = OCLprocessCollectionItem(NULL, $1); }

| expression TDDOT expression

{ $$ = OCLprocessCollectionItem($1, $3); }

;

pathName: name { $$ = OCLpathName($1); }

| enumLiteral

{ $1->SetType(OCLtype_PATHNAME); $$ = $1; }

;

isTimeExpression: { $$ = OCL_NOTPRE; }

| timeExpression { $$ = OCL_TPRE; }

;

timeExpression: ’@’ TPRE

;

isActualParameterList: { $$ = NULL; }

| actualParameterList { $$ = $1; }

;

actualParameterList:

expression

{ $$ = OCLmakeList(NULL, $1); }

| actualParameterList ’,’ expression

{ $$ = OCLmakeList($1, $3); }
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;

logicalOperator:

TAND { $$ = OCL_AND; }

| TOR { $$ = OCL_OR; }

| TXOR { $$ = OCL_XOR; }

| TIMPLIES { $$ = OCL_IMPLIES; }

;

collectionKind: TSET { $$ = OCL_SET; }

| TBAG { $$ = OCL_BAG; }

| TSEQUENCE { $$ = OCL_SEQUENCE; }

| TCOLLECTION { $$ = OCL_COLLECTION; }

;

relationalOperator:

TNOTEQUAL { $$ = OCL_NOTEQUAL; }

| TGREATEROREQUAL { $$ = OCL_GREATEROREQUAL; }

| TLESSOREQUAL { $$ = OCL_LESSOREQUAL; }

| ’>’ { $$ = OCL_GREATER; }

| ’<’ { $$ = OCL_LESS; }

| ’=’ { $$ = OCL_EQUAL; }

;

addOperator: ’+’ { $$ = OCL_Plus; }

| ’-’ { $$ = OCL_Minus; }

;
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multiplyOperator: ’*’ { $$ = OCL_Mul; }

| ’/’ { $$ = OCL_Div; }

;

unaryOperator: ’-’ { $$ = OCL_Minus; }

| TNOT { $$ = OCL_NOT; }

;

isName: { strcpy($$, ""); }

| name { strcpy($$, $1); }

;

name: TNAME { strcpy($$, $1); }

;

number: TINT

{ $$ = new OCLobject($1, OCLtype_INT); }

| TFLOAT

{ $$ = new OCLobject($1, OCLtype_FLOAT); }

| TEXPONENTIAL

{ $$ = new OCLobject($1, OCLtype_EXPONENTIAL); }

;

string: TSTRING { $$ = new OCLobject($1,OCLtype_STRING); }

;
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